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Abstract. In this paper we study stable ergodicity of the action of groups of

diffeomorphisms on smooth manifolds. The existence of such actions is known

only on one dimensional manifolds. The aim of this paper is to introduce a

geometric method to overcome this restriction and for constructing higher di-

mensional examples. In particular, we show that every closed manifold admits

stably ergodic finitely generated group actions by diffeomorphisms of class C1+α.

We also prove the stable ergodicity of certain algebraic actions including the nat-

ural action of a generic pair of matrices near the identity on a sphere of arbitrary

dimension. These are consequences of the quasi-conformal blender, a local and

stable mechanism/phenomenon introduced in this paper, which encapsulates our

method to prove stable local ergodicity by providing quasi-conformal orbits with

fine controlled geometry. The quasi-conformal blender is developed in the context

of pseudo-semigroup actions of locally defined smooth diffeomorphisms. This al-

lows for applications in different settings, including for the smooth foliations of

arbitrary codimension.
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1. Introduction

Let G be a subgroup of Diff1+α(M), the space of all diffeomorphisms with α-
Hölder derivative on a smooth Riemannian manifold M endowed with the C1 topol-
ogy. The action of G is minimal if every orbit is dense. Also, the action of G is
ergodic (w.r.t. Leb.) if every G-invariant set of positive Lebesgue measure in M has
full measure. Recall that for a map f , a measurable set S ⊆M is called f -invariant
if f(S) ⊆ S up to a set of zero Lebesgue measure. This definition of ergodicity
concerns only the class of the Lebesgue measure, and the invariance of the Lebesgue
measure is not assumed. A direct consequence of ergodicity is that Lebesgue almost
every point has a dense orbit. For F ⊆ Diff1+α(M), we say that the action of 〈F〉,
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the group generated by F , is stably ergodic if the action of the group generated by
any C1 small perturbation of F in Diff1+α(M) is ergodic.

A remarkable result regarding ergodicity with respect to the Lebesgue measure
(in the absence of an invariant measure in its class), proved by Katok and Herman,
asserts that every C2 minimal circle diffeomorphism is ergodic (cf. [Her79, KH95,
Nav11]). Note that the ergodicity in this result is not stable under perturbation. The
following theorem of Sullivan provides examples of stably ergodic actions by circle
diffeomorphisms. Indeed, the existence of stably ergodic actions by diffeomorphisms
is known only in dimension one and the aim of this paper is to introduce a mechanism
for stable ergodicity in every dimension.

Theorem 1.1 (Sullivan). Let G be a group of C1+α circle diffeomorphisms, with
α > 0. Assume that for all x ∈ S1, there exists some g ∈ G such that g′(x) > 1. If
the action of G is minimal, then it is ergodic.

From the proof of this theorem, one can deduce that the action of the groups
generated by certain finite subsets of G are indeed stably ergodic (cf. [Nav04,
SS85]). This for instance implies that the group generated by an irrational rotation
and a Morse-Smale diffeomorphism is an example of a stably ergodic action by
diffeomorphisms in Diff1+α(S1).

In dimension one, every action is conformal, i.e. balls are mapped to balls. This
is a crucial fact in the study of group actions on a one dimensional manifold and
particularly in Theorem 1.1 above (cf. [DKN18, Nav18] and their references for
recent developments). The idea of generalizing Sullivan’s proof to higher dimensions
is, of course, not new. For instance, generalizations of Theorem 1.1 are proved for
conformal actions in higher dimensions (cf. [DK07a, BFMS17]). However, such
generalizations do not provide stably ergodic actions, since conformality (or quasi-
conformality) of an action is not stable in higher dimensions.

In this paper, we develop a geometric approach generalizing Sullivan’s method
to higher dimensions. It allows us to control the geometry of images of small open
balls under certain orbit-branches, in a very stable way. In particular, it yields the
following variant of Theorem 1.1. Such controlled geometry along the orbits is a
crucial part of our proofs and may be of its own independent interest.

Theorem A. Let G be a group of C1+α diffeomorphisms on a smooth closed Rie-
mannian manifold M , with α > 0. Assume that for any (x, v) ∈ T 1M , there exists

some g ∈ G such that m(Dxg) > 1 and ‖D̂xg|v⊥‖ < 1. If the action of G is minimal,
then it is ergodic. Moreover, G contains a finite subset generating a stably ergodic
group action.

Here, D̂x(f) := σ−1/dDxf denotes the normalized derivative, where σ > 0 is the
Jacobian of f at x. Also, m(.) is the co-norm of a linear map, and v⊥ is the linear
subspace orthogonal to a vector v. If dim(M) = 1, the statement of this theorem

is exactly the one of Theorem 1.1, since ‖D̂xg|v⊥‖ ≡ 0 on T 1M . The conclusion
of Theorem A is not sensitive to the choice of Riemannian metric and it suffices to
ensure its assumptions for a metric on M .

Theorem A and its counterpart for the pseudo-groups of locally defined diffeomor-
phisms (Theorem 6.4) are obtained from a local and stable mechanism for ergodicity
introduced in Theorem F. It also allows us to prove the following.
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Theorem B. Every closed manifold M admits a stably ergodic semigroup action
generated by two diffeomorphisms in Diff1+α(M).

This theorem gives the first example of a stably ergodic finitely generated group
action in Diff1+α(M) on a manifold M of dimension greater than one. The notion of
stable ergodicity in the space Diff1+α(M) should not be mistaken with the notion of
stable ergodicity within the class of volume-preserving diffeomorphisms Diff1+α

vol (M).
In fact, on a closed surface S, we observe that the action of any cyclic subgroup of
Diff1+α(S) is not stably ergodic, while area-preserving Anosov diffeomorphisms of
T2 are stably ergodic in Diff1+α

vol (T2). Such observations indicate that the number
of generators in Theorem B is optimal (See Section 7 for further discussion).

On the other hand, C1+α expanding endomorphisms are stably ergodic. One way
to show it is by considering a dynamically defined sequence of partitions with ar-
bitrarily small diameters, such that every element of each partition is eventually
mapped to a ball of uniform size. An alternative approach in this setting is based
on the functional analytic methods to show the existence of a unique ergodic invari-
ant measure in the class of Lebesgue measure (cf. [VO16, Rue04, Krz78, Sac74]).
While this approach has been extended to various settings including maps with
non-uniform expansions and singularities (cf. [ABV00, VV10]), it requires further
developments in the setting of (pseudo) group actions.

We should also mention the striking results on ergodic theory of groups of sur-
face diffeomorphisms in [BR17], which give a classification of stationary measures
for smooth group actions in dimension 2 and yield remarkable examples of sta-
bly ergodic group actions in the space of area-preserving surface diffeomorphisms
[Liu16, Chu20]. On the other hand, the stable ergodicity of finitely generated dense
subgroups of isometries of even dimensional spheres within the class of sufficiently
smooth volume-preserving diffeomorphisms is proved in [DK07b]. Unfortunately,
the results in these remarkable papers are not enough for showing stable ergodicity
beyond the conservative setting (cf. §7.3).

The following algebraic example is a consequence of Theorem A.

Theorem C. Let d ≥ 1 and F be a finite subset of SL(d+ 1,R). Assume that the
closure of 〈F〉 strictly contains SO(d+ 1). Then, the natural action of 〈F〉 on Sd is
stably ergodic in Diff1+α(Sd). Moreover, it is C1-robustly minimal.

Here, the action of A ∈ SL(d + 1,R) on Sd is defined by x 7→ Ax
|Ax| . Recall that

the action of 〈F〉 is called C1-robustly minimal if the action of the group generated
by every small perturbation of F in the space of all C1 diffeomorphisms is minimal.

It is known that for d ≥ 2, every generic pair of elements near the identity
generates a dense subgroup of SL(d,R) [Kur51].

Corollary D. The family F in Theorem C can be a generic pair near the identity
element in SL(d+ 1,R).

Recall that by fixing a probability distribution on the acting semigroup, a sta-
tionary measure is a measure which remains invariant in average. The main results
of this paper imply the following uniqueness result for ergodic stationary measures.

Corollary E. In the setting of either Theorems A,B or C, if the acting semigroup
is finitely generated, for any probability distribution on generators, there is at most
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one absolutely continuous ergodic stationary measure, and it is equivalent to the
Lebesgue measure.

The problem of ergodicity is more subtle for the pseudo-groups of localized dy-
namics, where the restriction of the maps to a given domain are considered. While
the localized dynamics appears in many setting, such as the return maps or the lo-
cal holonomy of a foliation, it is well-understood only in dimension one. Most basic
questions in higher dimensions are open, even for the local affine actions or local
homogeneous actions (cf. [BIS17] for a remarkable development for certain algebraic
actions). As an application of our main results, one can provide the first examples
of foliations of codimension greater than one which are stably ergodic with respect
to the transversal Lebesgue measure (cf. [Raj22] for the detailed proof).

1.1. Quasi-conformal blender. The next theorem provides a stable and local
mechanism for generating quasi-conformal orbits of pseudo-semigroups and to de-
duce local ergodicity. As mentioned before, it plays a fundamental role in proving
our main results stated above. Moreover, it makes the proof of Theorem B con-
structive, as well as flexible.

We denote Diff1+
loc(M) :=

⋃
α>0 Diff1+α

loc (M), where Diffsloc(M) is the space of all
Cs diffeomorphisms f : Uf → Vf such that Uf and Vf are open subset of M . To
obtain the strongest stability results we consider C1 topology on this space, i.e.,
two elements of Diffsloc(M) are C1-close if their graphs are C1-close submanifolds of
M ×M .

A diffeomorphism f ∈ Diff1
loc(M) is called expanding if m(Dxf) > 1 at every

point x in its domain of definition.
Let π : E(M)→M be the fiber bundle over a Riemannian manifold M of dimen-

sion d defined by

E(M) :=
{

(x,v) : x ∈M, v ∈ (TxM)d and det(Av) = 1
}
,

where for v := (v1, . . . , vd), Av is a d× d matrix with (i, j)-entries equal to 〈vi, vj〉x,
the inner product of vi, vj assigned by the Riemannian metric on TxM . Note that
E(M) is an SL±(d,R) bundle over M , where SL±(d,R) consists of all d×d matrices
with determinant ±1. Indeed, we consider a metric on E(M) inducing the following
norm on its fibers,

‖(x,v)‖2 :=
( d∑

i=1

〈vi, vi〉2x
) 1

2 .

In particular, whenever M is an open subset of Rd, E(M) is isomorphic to the
trivial bundle M×SL±(d,R), endowed with the Hilbert-Schmidt norm on the fibers.

For a diffeomorphism f ∈ Diff1
loc(M) with f : Uf → Vf , one can naturally define

a fiber map D̂f : π−1(Uf )→ π−1(Vf ) defined by

D̂f(x,v) :=
(
f(x), D̂xf(v)

)
,

where D̂xf(v) := (D̂xf(v1), . . . , D̂xf(vd)) for v = (v1, . . . , vd) ∈ (TxM)d (cf. Re-
mark 4.3).

Also, we use the notation f↓V := f |V ∩f−1(V ) for the restriction of an invertible
map f to the set of points in a set V that are mapped to V . Similarly, we denote
F↓V := {f↓V : f ∈ F} for a family of maps localized to V .
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Theorem F (Quasi-conformal blender). Let F ⊆ Diff1+
loc(M) be a family of expand-

ing diffeomorphisms between open subsets of a smooth manifold M . Let W ⊆ E(M)
be an open set with compact closure, and V := π(W). Assume that

(1) W ⊆
⋃

f∈F
(D̂f)−1(W).

Then, there exists a real number r > 0 such that every measurable F↓V -invariant
set S with Leb(S ∩ V ) > 0 contains a ball of radius r (up to a set of zero measure).
Moreover, this property is C1-stable with uniform r > 0.

The principal role of the covering condition (1) is to guarantee the existence of
quasi-conformal orbit-branches in the domain V . In dimension one, it is equivalent
to V ⊆ F−1(V ).

We would like to emphasize on the multiple stability in this theorem. The covering
condition (1), the domain V and the radius r are all stable under small perturbations
in the C1 topology, and are independent of the family’s regularity class and its
corresponding norm. This resembles the idea behind the creation of blenders in
partially hyperbolic dynamics. The concept of blender was introduced in the seminal
work of Bonatti and Dı́az [BD96] as a stable and local mechanism for transitivity.
During the last decades, it has been generalized and used in diverse settings (cf.
[RRTU11, NP12, ACW17, Ber16] among others).

Most results in this paper are proved for the actions of pseudo-semigroups of
locally defined diffeomorphisms. This allows to deal with broader classes of systems.
In particular, one can apply Theorem F to get stably ergodic smooth foliations of
arbitrary codimension, while the only known examples were of codimension one.
This will be discussed in a forthcoming paper. One may expect further applications
of the local tool introduced in Theorem F in smooth ergodic theory.

Let say a few words about the proof of Theorem F. The proof of ergodicity is
based on the simplest known method, i.e., by means of expansions. Given a set S of
positive measure, one has to show that its orbit has full measure. Then, one shows
that the iteration of the infinitesimal neighborhood of a Lebesgue density point of
S gives large open sets that are mostly contained in the orbit of S. To realize this
idea for the locally defined diffeomorphisms (or for the action of diffeomorphisms
that each one is expanding at some regions) one needs to control the geometry
of balls to remain almost round through the expanding iterations. This requires
new techniques which are the main ingredients of this paper. Two main steps
are involved. First, we show that covering condition (1) implies that for some
κ > 1, the pseudo-semigroup generated by F↓V (or its perturbations) has a κ-
conformal orbit-branch at every point of V (Theorem 4.1). Second, we obtain a good
control of geometry of small balls under iteration of sequences of maps satisfying
infinitesimal assumptions of expansion and quasi-conformality (Theorem 3.1). The
C1+α regularity of the sequence is essential in this analysis. These two steps together,
roughly, show that diversity of non-conformality may lead to stable and quantitative
controlled geometry of certain iterations of small balls. This type of control of
geometry, together with the classical distortion control argument allows us to obtain
local ergodicity. Further analysis leads to uniform size of radius r, independent of
modulus of Hölder regularity of derivatives or their norms.
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Organization. The paper is organized as follows. In Section 2, we introduce some
definitions, the precise setting, and notations. Section 3 contains a crucial technical
step in the proof of the main theorems (Theorem 3.1). Section 4 is devoted to quasi-
conformality, where we show that the existence of quasi-conformal orbit-branches is
equivalent to condition (1) for some bounded W. Also, two methods are given to
verify that condition. They will be used in the proof of Theorems A and B. Section
5 contains the proof of Theorem F and its variants. In Section 6, we prove Theorems
A, B and C. In Section 7, some questions related to the main results are discussed.

2. Preliminary definitions and notations

Let M be a boundaryless smooth manifold of dimension d endowed with a Rie-
mannian metric. We denote by |.| the norm induced by this metric on the tangent
space. We also denote the measure induced from this metric by Leb., and call it the
Lebesgue measure. Furthermore, we denote the ball of radius r with center x ∈ M
by B(x, r). For k ∈ N and α ∈ (0, 1), we say f : M →M is of class Ck+α, whenever
f is Ck and its k-th derivative is α-Hölder continuous.

For a real number s > 1, Cs means Ck+α, where s = k + α and k is its integer
part. For f ∈ Diff1+α

loc (Rd), the C1+α norm of f , denoted by ‖f‖C1+α is defined by

‖f‖C1+α := ‖f‖C1 + sup
{‖Dxf −Dyf‖
|x− y|α : x, y ∈ Dom(f), 0 < |x− y| < 1

}
.

One can use local charts and define C1+α norm for the smooth maps between open
subsets of manifolds.

We use Diffs(M) to denote the group of Cs diffeomorphisms ofM . Also, Diff1+(M)
is the union of all Diffs(M) with s > 1. Throughout the paper, we usually consider
the C1 topology on Diffs(M). Denote by Diffsloc(M) the space of all Cs diffeomor-
phisms f : Dom(f) → Im(f) such that Dom(f) and Im(f) are open subset of M .
Two elements of Diffsloc(M) are Cl-close if their graphs are Cl-close submanifolds of
M ×M , for l ≤ s. Similarly, Diff1+

loc(M) is the union of of all Diffsloc(M) with s > 1.

For x ∈ M , U ⊆ M and families of maps F ,G ⊆ Diff1
loc(M), we denote F(U) :=⋃

f∈F f(U), F(x) := F({x}), and

F ◦ G := {f ◦ g : f ∈ F , g ∈ G}.

Also, put F0 = {Id} and for k ∈ N, denote Fk := Fk−1 ◦ F . We use 〈F〉+ (resp.
〈F〉) for the semigroup (resp. the group) generated by F . By IFS (F), we mean the
iterated function system generated by F , that is the action of 〈F〉+ on M . Given
a finite family F = {f1, . . . , fk} ⊆ Diff1+α

loc (M), the ε-neighbourhood of F in the

C1 topology is the set of all families F̃ = {f̃1, . . . , f̃k} ⊆ Diff1+α
loc (M) such that

fi, f̃i are ε-close in the C1 topology, for any i = 1, . . . , k. Similarly, one can define
ε-neighbourhood of an infinite family of maps in Diff1+α

loc (M).

We say a property P holds C1-stably for F in Diff1+α(M), if P holds for every

F̃ in a C1-open neighbourhood of F in Diff1+α(M). Also, we say a property P

holds C1-robustly for F , if P holds for every F̃ in a C1-open neighbourhood of F
in Diff1(M). Clearly, by the definition, C1-robustness is stronger than C1-stability.
Similarly, C1 stability and robustness are defined for Diff1+(M), Diff1+

loc(M) and
Diffsloc(M), s > 1.
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2.1. Localized dynamics. For an open set V ⊆ M and f ∈ Diff loc(M) with
f : Dom(f) → Im(f), we define the localization of f to V , by f↓V := f |V ∩f−1(V ).

Clearly, the domain and the image of f↓V are Dom(f↓V ) = V ∩ f−1(V ∩ Im(V )),
and Im(f↓V ) = f(V ∩ Dom(f)) ∩ V , respectively, and f↓V : Domf↓V → Imf↓V is
a bijective map.

For a family F of invertible maps, we denote the pseudo-semigroup (resp. pseudo-
group) generated by localization of elements of F to V by 〈F↓V 〉+ (resp. 〈F↓V 〉) and
by IFS(F↓V ) the action of this pseudo-semigroup. A finite orbit-branch of IFS(F↓V )
at x is a sequence {xi}ni=0 in V such that x0 = x and for any 1 ≤ i ≤ n, there exists
fi ∈ F with xi−1 ∈ Dom(fi↓V ) and fi(xi−1) = xi. Infinite orbit-branches are
defined similarly. The orbit of IFS(F↓V ) at x ∈ V , denoted by 〈F↓V 〉+(x), is the
set of all points in finite orbit-branches at x. For S ⊆ V , define 〈F↓V 〉+(S) :=
∪x∈S〈F↓V 〉+(x).

In this paper, we deal with two basic dynamical concepts, namely, minimality
and ergodicity. IFS(F↓V ) is called minimal if for any x ∈ V , 〈F↓V 〉+(x) is dense
in V . Fixing a measure µ on V , we say a measurable map f↓V is non-singular
with respect to µ, if f∗

(
µ|Dom(f)

)
is absolutely continuous with respect to µ|Im(f).

When both f, f−1 are measurable and non-singular with respect to µ, we say that
µ is quasi-invariant for f . A measurable set S ⊆ V is called F↓V -invariant, if
〈F↓V 〉+(S) ⊆ S up to a set of measure zero. Moreover, IFS(F↓V ) is called ergodic
with respect to µ, if µ is quasi-invariant for all the elements of F , and there is no
measurable F↓V -invariant set S with 0 < µ(S ∩ V ) < µ(V ).

Throughout the paper, the sets we are localizing the dynamics on are open subsets
of smooth manifolds. We fix the Lebesgue measure on the manifolds and all the
statements regarding ergodicity are with respect to the Lebesgue measure.

2.2. Expanding maps. For a linear map D, we denote its operator norm by ‖D‖,
and its co-norm by m(D) := inf{|D(v)| : |v| = 1}. If D is invertible, then m(D) =
‖D−1‖−1. A diffeomorphism f ∈ Diff1

loc(M) is called expanding, if there exists η > 1
such that m(Dxf) > η for every x ∈ Dom(f). Clearly, the expanding property is
C1-robust.

Definition 2.1. For η > 1 and N ∈ N ∪ {∞}, we say a sequence {fi}Ni=1 in
Diff1

loc(M) is η-expanding at x0 ∈ M , if for any integer i ∈ [1, N ], xi−1 ∈ Dom(fi)
and m(Dxi−1fi) > η, where xi = fi ◦ · · · ◦ f1(x0). Furthermore, the sequence is
expanding at x0 if it is η-expanding for some η > 1.

2.3. Quasi-conformality. For a real number κ ≥ 1, a matrix D ∈ GL(d,R) is
κ-conformal, if ‖D‖/m(D) = ‖D‖ · ‖D−1‖ ≤ κ and a sequence {Di}Ni=1 in GL(d,R)
is κ-conformal, if for any integer n ∈ [1, N ], DnDn−1 · · ·D1 is κ-conformal. Here,
N can be finite or infinite. It follows immediately from definition that for D1, D2 ∈
GL(d,R), if Di is κi-conformal (i = 1, 2), then D1D2 is κ1κ2-conformal, and D−1

1 is
κ1-conformal. These in particular imply that for a κ-conformal sequence {Di}Ni=1,
all the products of the form DjDj−1 · · ·Di for 1 ≤ i < j ≤ N are κ2-conformal. As
derivatives of smooth maps are linear maps between tangent spaces, one can define
similar notions for them.

Definition 2.2. For κ ≥ 1 andN ∈ N∪{∞}, we say a sequence {fi}Ni=1 in Diff1
loc(M)

is κ-conformal at x ∈ M , if for any integer n ∈ [1, N ], x ∈ Dom(fn) and the linear
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map Dxf
n is κ-conformal, where fn = fn ◦ · · · ◦ f1. Furthermore, the sequence is

quasi-conformal at x if it is κ-conformal at x for some κ ≥ 1.

3. Expanding sequences

Here, we prove two technical results which will be used for showing ergodicity of
quasi-conformal blenders. The first one provides a precise control of geometry under
quasi-conformal expanding sequences. The second one is the standard bounded
distortion lemma adapted to our setting of expanding sequences of local maps.

Throughout the section, M is a closed manifold of dimension d. For a sequence
{fi}∞i=1 in Diff1+α

loc (M), denote f i := fi ◦ · · · ◦ f1 and f0 := Id. We denote the open

ball of radius of r > 0 around origin in Rd with Br(0).

3.1. Control of geometry. Our main goal in this subsection is to prove the fol-
lowing theorem.

Theorem 3.1. Let {fi}∞i=1 be a sequence in Diff1+α
loc (M) with bounded C1+α norm.

Let also x ∈M and ρ > 0 be such that for any n ∈ N, fn is defined on B(fn−1(x), ρ).
If the sequence is quasi-conformal expanding at x, then there exist ξ0 > 0 and θ > 1
such that for any ξ ∈ (0, ξ0] and n ∈ N,

fn(B(x, rn)) ⊆ B(fn(x), ξ) ⊆ fn(B(x, θrn)),

for some rn > 0.

In other words, one obtains a control of geometry of the iterations of a ball from
certain assumptions on the derivatives at the center. The passage from linear to
nonlinear follows from precise estimates on pseudo-orbits of corresponding product
of matrices. The proof of this theorem occupies the entire subsection. As it is a
local statement, we prove Theorem 3.1 by showing similar statements on Euclidean
space and for uniformly contracting sequences of local diffeomorphisms.

Fix R,C > 0, κ ≥ 1 > λ > λ > 0 and α ∈ (0, 1). For N ∈ N ∪ {∞}, we consider
the following hypotheses for the sequence {hn}Nn=1.

(H0) hn : BR(0)→ hn(BR(0)) is a C1+α diffeomorphism fixing the origin,
(H1)

∥∥hn
∥∥
C1+α < C,

(H2) for any y ∈ BR(0), λ < m(Dyhn) ≤ ‖Dyhn‖ < λ,
(H3) hn is κ-conformal at the origin.

Note that, it follows from (H2) that hn(BR(0)) ⊆ BR(0).
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Fix R, C > 0, � 1 > � > � > 0 and ↵ 2 (0, 1). For N 2 N [ {1}, we consider
the following hypotheses for the sequence {hn}N

n=1.

(H0) hn : BR(0) ! hn(BR(0)) is a C1+↵ di↵eomorphism fixing the origin,
(H1)

��hn

��
C1+↵ < C,

(H2) for any y 2 BR(0), � < m(Dyhn)  kDyhnk < �,
(H3) hn is -conformal at the origin.

Note that, it follows from (H2) that hn(BR(0)) ✓ BR(0).

Figure 1. Sequence of maps satisfying (H0)-(H3) in Lemma 3.2.

Lemma 3.2. Let d 2 N, R, C > 0,  � 1 > � > � > 0 and ↵ 2 (0, 1). Then,
there exist ⇠0 2 (0, R) and �, ✓ > 1 such that for any ⇠ 2 (0, ⇠0], any n 2 N and any
sequence {hj}n

j=1 of maps satisfying (H0)-(H3),

(2) Br/✓(0) ✓ hn(B⇠(0)) ✓ B✓r(0),

for r = ⇠| det D0h
n|1/d. Moreover, for any |x|  ⇠,

(3) |hn(x) � D0h
n(x)| < �| det D0h

n|1/d|x|1+↵.

This lemma follows from the next one on sequences of linear maps satisfying
conditions (H2)-(H3). It establishes precise estimates on the di↵erence between the
orbits and certain pseudo orbits.

Given a sequence {Di}1i=1 in GL(d, R), for a pair i < j of positive integers denote
Dj,i := DjDj�1 · · · Di.

Lemma 3.3 (Key Lemma). Let C > 0,  � 1 > � > � > 0 and ↵ 2 (0, 1). Then,
there exist ⇠1, � > 0 such that for any n 2 N, any sequence {Di}n

i=1 of matrices in
GL(d, R) satisfying

(C1) Contraction: For any 1  i  n, �  m(Di)  kDik  � < 1,

(C2) Quasi-conformality: For any 1  i  n,
kDi,1k
m(Di,1)

 ,

and any sequence {yi}n
i=0 in Rd with |y0|  ⇠1 and

(4) |yi+1 � Di+1yi| < C|yi|1+↵,

the following holds

(5) |yn � Dn,1y0| < �| det Dn,1|1/d|y0|1+↵.

Figure 1. Sequence of maps satisfying (H0)-(H3) in Lemma 3.2.
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Lemma 3.2. Let d ∈ N, R,C > 0, κ ≥ 1 > λ > λ > 0 and α ∈ (0, 1). Then,
there exist ξ0 ∈ (0, R) and γ, θ > 1 such that for any ξ ∈ (0, ξ0], any n ∈ N and any
sequence {hj}nj=1 of maps satisfying (H0)-(H3),

(2) Br/θ(0) ⊆ hn(Bξ(0)) ⊆ Bθr(0),

for r = ξ| detD0h
n|1/d. Moreover, for any |x| ≤ ξ,

(3) |hn(x)−D0h
n(x)| < γ|detD0h

n|1/d|x|1+α.

This lemma follows from the next one on sequences of linear maps satisfying
conditions (H2)-(H3). It establishes precise estimates on the difference between the
orbits and certain pseudo-orbits.

Given a sequence {Di}∞i=1 in GL(d,R), for a pair i < j of positive integers denote
Dj,i := DjDj−1 · · ·Di.

Lemma 3.3 (Key Lemma). Let C > 0, κ ≥ 1 > λ > λ > 0 and α ∈ (0, 1). Then,
there exist ξ1, γ > 0 such that for any n ∈ N, any sequence {Di}ni=1 of matrices in
GL(d,R) satisfying

(C1) Contraction: For any 1 ≤ i ≤ n, λ ≤ m(Di) ≤ ‖Di‖ ≤ λ < 1,

(C2) Quasi-conformality: For any 1 ≤ i ≤ n,
‖Di,1‖
m(Di,1)

≤ κ,

and any sequence {yi}ni=0 in Rd with |y0| ≤ ξ1 and

(4) |yi+1 −Di+1yi| < C|yi|1+α,

the following holds

(5) |yn −Dn,1y0| < γ| detDn,1|1/d|y0|1+α.

Proof. The proof of the lemma consists of several steps. First, a rough a priori upper
bound for the norms of the terms in the sequence is given. Second, one observes
that if the matrices in the sequence satisfy an extra assumption between the norm
and the co-norm, a more accurate estimate holds which leads to the statement of the
lemma. The extra assumption is not restrictive as it can be verified if one replaces
the sequence by its large blocks of compositions.

For the proof, fix C, κ, λ, λ, α > 0 and consider sequences {Di}ni=1, {yi}ni=0 as in
the lemma. It follows from (C2) that for any j > i, Dj,i is κ2-conformal. Since

m(Dj,i) ≤ |detDj,i|1/d ≤ ‖Dj,i‖, one gets

‖Dj,i‖
|detDj,i|1/d

≤ ‖Dj,i‖
m(Dj,i)

≤ κ2, and
| detDj,i|1/d
m(Dj,i)

≤ ‖Dj,i‖
m(Dj,i)

≤ κ2,

So the condition (C2) implies the following.

(C2)′ For any j > i ≥ 1, κ−2| detDj,i|1/d ≤ m(Dj,i) ≤ ‖Dj,i‖ ≤ κ2| detDj,i|1/d.

Claim 1. For any α′ > 0, there exist K = K(κ, d, λ, λ, α′) ∈ N and τ > 0 such that
for any i ≥ 0,

(6)
(
‖Di+K,i+1‖+ τ

)1+α′ ≤ |detDi+K,i+1|1/d.
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Proof. For t ∈ R+, denote ϕ(t) := t
1

1+α′ − κ2t. Since 1 + α′ > 1, there exists
T = T (α′, κ) > 0, such that ϕ(t) is positive and increasing on (0, T ). Let K ∈ N
be large enough such that λ

K
< T and τ := ϕ(κ−2λK). Now, the conclusion easily

follows from (C2)′ and (C1). �

Note that from (4), |yi+1| < C|yi|1+α + ‖Di+1‖|yi|. Therefore, if |y0| ≤ ξ′ :=

C−
1
α (1− λ)

1
α , then for any i ≥ 0, C|yi|α + ‖Di+1‖ ≤ 1 and so

(7) |yi+1| ≤ |yi|.
Define εi := yi+1 − Di+1yi ∈ Rd. For any pair i, k ≥ 0, one obtains an explicit
formula for yi+k in terms of yi and {εj : i ≤ j < i+ k},

yi+k = Di+kyi+k−1 + εi+k−1 = Di+k(Di+k−1yi+k−2 + εi+k−2) + εi+k−1 = · · ·

= Di+k,i+1yi +

i+k∑

j=i+2

Di+k,jεj−2 + εi+k−1.(8)

Claim 2. If |y0| ≤ ξ′, then for any i ≥ 0 and k ≥ 1,

|Di+k,i+1yi − yi+k| < Ck|yi|1+α.

Proof. By (8) and since ‖Dj‖ < 1,

|yi+k −Di+k,i+1yi| ≤
i+k−1∑

j=i

|εj |.

On the other hand, (4) and (7) imply that for any j = i, . . . , i + k − 1, |εj | <
C|yj |1+α ≤ C|yi|1+α. This finishes the proof of Claim 2. �

Now, let α′ ∈ (0, α). Suppose that K ∈ N, τ > 0 are the numbers provided by
Claim 1. The aim of Claims 3 and 4 is to prove the conclusion of Lemma 3.3 when
n is divisible by K, and then Claim 5 completes the proof for arbitrary n.

Claim 3. There exist ξ1, τ
′ > 0 with τ ′ < min{1 − λK , τ} and ξ1 ≤ ξ′ such that if

|yi| ≤ ξ1, then for any p ≥ 1,

(9) |ypK+i| ≤
p−1∏

j=0

(
‖D(j+1)K+i,jK+i+1‖+ τ ′

)
|yi| ≤ |yi|.

Proof. It suffices to prove (9) for p = 1. The general case follows immediately

from induction on p. Let τ ′, ξ1 > 0 be such that τ ′ < min{1 − λK , τ} and ξ1 ≤
min{(C−1K−1τ ′)

1
α , ξ′}. Then, by Claim 2,

|yi+K |
|yi|

< ‖Di+K,i+1‖+ CK|yi|α ≤ ‖Di+K,i+1‖+ τ ′ ≤ λK + τ ′ < 1.

This finishes the proof of Claim 3. �

Claim 4. There exists γ′ > 0 such that for any p ∈ N and q ≥ 0,

|ypK+q −DpK+q,q+1yq| < γ′| detDpK+q,q+1|1/d|yq|1+α,

provided that |yq| ≤ ξ.
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Proof. Define α′′ := α − α′ > 0. For simplicity, for a fixed q and 1 ≤ i ≤ p, we

write D′i := DiK+q,(i−1)K+q+1, λ
′
i := ‖D′i‖, λ′i := m(D′i). Moreover, for 0 ≤ i ≤ p,

let y′i := yiK+q. Also, denote ε′i := y′i+1 −D′i+1y
′
i. Similar to (8), one gets,

y′p = D′p,1y
′
0 +Dp,2ε

′
0 + · · ·+D′p,p−1ε

′
p−3 +D′pε

′
p−2 + ε′p−1,

and so,

(10) |y′p −D′p,1y′0| ≤ |D′p,2ε′0|+ · · ·+ |D′pε′p−2|+ |ε′p−1|.

Let λ
′
:= λ

K
and λ′ := λK . Claim 1 and τ ′ ≤ τ imply

(11) (λ
′
j + τ ′)1+α = (λ

′
j + τ ′)1+α′(λ

′
j + τ ′)α

′′ ≤ δ′j(λ
′
+ τ ′)α

′′
.

Hence, by Claims 2 and 3,

|ε′k| ≤ CK|y′k|1+α ≤ CK|y′0|1+α
k∏

j=1

(λ
′
j + τ ′)1+α

≤ CK(λ
′
+ τ ′)

kα′′

δ′k · · · δ′1|y′0|1+α

By (C2)′, for p ≥ k + 2,

|D′p,k+2ε
′
k| ≤ κ2δ′p · · · δ′k+2|ε′k|

≤ CKκ2δ′p · · · δ′k+2(λ
′
+ τ ′)

kα′′

δ′k · · · δ′1|y′0|1+α

≤ CKκ2

λ′
(λ
′
+ τ ′)kα

′′
δ′p · · · δ′1|y′0|1+α,

where the last inequality follows from δ′k+1 ≥ λ′k+1. Now, from (10),

|y′p −D′p,1y′0| ≤
CKκ2

λ′
( p−1∑

k=0

(λ
′
+ τ ′)kα

′′
)
δ′p · · · δ′1|y′0|1+α.

On the other hand, λ
′
+ τ ′ < 1. Consequently,

p−1∑

k=0

(λ
′
+ τ ′)kα

′′ ≤ C ′ :=
∞∑

k=0

(λ
′
+ τ ′)kα

′′
<∞.

Therefore, taking γ′ := κ2CKC ′λ−K finishes the proof. �

Claim 5. There exists γ > 0 such that if |y0| ≤ ξ1,

|yn −Dn,1y0| < γ| detDn,1|1/d|y0|1+α.

Proof. Let δi := |detDi|1/d and write n = pK + q for 0 ≤ q < K. Since |yq| ≤ ξ1

from Claim 4,

|ypK+q −DpK+q,q+1yq| ≤ γ′δpK+q · · · δq+1|yq|1+α.

Meanwhile, from (C2)′ and Claim 2, it follows that

|DpK+q,q+1yq −DpK+q,1y0| ≤ ‖DpK+q,q+1‖.|yq −Dq,1y0|
≤ κ2δpK+q · · · δq+1Cq|y0|1+α.
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Finally, by Claim 4 and since δi ≥ λ, one has

|ypK+q −DpK+q,1y0| ≤ δpK+q · · · δq+1|y0|1+α(γ′ + κ2Cq)

≤ δpK+q · · · δq+1δq · · · δ1|y0|1+αλ−q(γ′ + κ2Cq).

So, the conclusion holds for γ := λ−K(γ′ + κ2CK). �

Claim 5 completes the proof of Lemma 3.3. �

Now, we are ready to complete the proof of Lemma 3.2 and Theorem 3.1.

Proof of Lemma 3.2. Take x ∈ BR(0). Clearly, if the sequence {hj}nj=1 satisfies

(H0)-(H3), then the conditions of Lemma 3.3 are satisfied for Dj := D0hj , yj :=
hj(x) = hi(xi−1). So, (3) holds for any |x| ≤ ξ1. In order to prove (2), note that (3)
in particular implies that

(12) |D0h
n(x)| − γ| detD0h

n(x)|1/d|x|1+α < |hn(x)|,
and

(13) |hn(x)| < |D0h
n(x)|+ γ| detD0h

n(x)|1/d|x|1+α.

On the other hand, by (C2)′,

κ−2|detD0h
n(x)|1/d|x| ≤ |D0h

n(x)| ≤ κ2|detD0h
n(x)|1/d|x|.

This combined with (12) and (13), implies that

κ−2|x| − γ|x|1+α <
|hn(x)|

|detD0hn(x)|1/d < κ2|x|+ γ|x|1+α.

Therefore, for any ξ with κ−2−γξα > 0, Br1(ξ)(0) ⊆ hn(Bξ(0)) ⊆ Br2(ξ)(0), provided
that

r1(ξ) := (κ−2 − γξα)ξ|detD0h
n|1/d, r2(ξ) := (κ2 + γξα)ξ|detD0h

n|1/d.
To prove (2), take θ > κ2. Then, for sufficiently small ξ > 0, κ2 + γξα < θ and
κ−2 − γξα > θ−1. �

Proof of Theorem 3.1. Let R1 > 0 be smaller than the radius of injectivity of the
exp function on M and xj := f j(x). Suppose that the sequence is κ-conformal
η-expanding at x0. Since the sequence has bounded C1+α norm, there is ρ′ ∈ (0, ρ)
and η, η > 1 such that for any i ∈ N and y ∈ B(xi−1, ρ

′),

η < m(Dyfi) ≤ ‖Dyfi‖ < η.

In fact, one has supi∈N ‖Dfi|B(xi−1,ρ)‖ <∞, and if C > supi∈N ‖fi‖C1+α ,

|m(Dxi−1fi)−m(Dyfi)| < C|xi−1 − y|α.

So, m(Dyfi) > η for any y ∈ B(xi−1, ρ
′), provided that ρ′ < (C−1(η − η))

1
α , .

For R < R0 := (η)−1 min{R1, ρ
′} and i ∈ N, the map f̃i := exp−1

xi ◦fi ◦ expxi−1

is defined on BR(0) ⊆ Txi(M) and is a diffeomorphism onto its image. After an
isometric identification of the tangent spaces with Rd, one can consider the sequence
{f̃i}∞i=1 as a sequence of expanding maps defined on BR(0) ⊆ Rd. By uniform

expansion of the maps, BR(0) ⊆ f̃i(BR(0)).
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Next, fix n ∈ N. The sequence {hj}nj=1 defined by hj := f̃−1
n+1−j |BR(0) satisfies

hypotheses (H0)-(H3) with constants independent of the choice of n. So, by Lemma
3.2, there are θ > 1 and ξ0 > 0 such that for any ξ ≤ ξ0 and for some rn > 0,

(hn)−1(Brn(0)) ⊆ Bξ(0) ⊆ (hn)−1(Bθrn(0)) ⊆ BR(0).

This finishes the proof, since (hn)−1 = exp−1
xn ◦fn ◦ expx0 and for small r > 0, the

function expx : TxM →M , maps Br(0) ⊆ TxM to B(x, r) ⊆M . �

3.2. Bounded distortion. In this subsection, we present a bounded distortion
lemma for a sequence of contracting maps which permits us to control the growth
of measure of iterations of measurable sets. The proof here is an adaptation of
the classical argument to our setting. Let R1 > 0 be smaller than the radius of
injectivity of the exp function on M .

Lemma 3.4. Let α, λ ∈ (0, 1) and C > 0. Then, there exists L > 1 such that for
any R < R1, any n ∈ N, any sequence {xj}nj=0 in M , and any sequence {hj}nj=1

in Diff1+α
loc (M) with hj : B(xj−1, R) → hj(B(xj−1, R)) satisfying hj(xj−1) = xj,

‖Dhj‖ < λ, ‖hj‖C1+α < C, and every pair of measurable sets S1, S2 ⊆ B(x0, R) of
positive Lebesgue measure,

L−1 Leb(S1)

Leb(S2)
<

Leb(hn(S1))

Leb(hn(S2))
< L

Leb(S1)

Leb(S2)
.

Recall that hn := hn ◦ · · · ◦ h1.

Proof. Since there is an upper bound for the C1+α norm of the derivative of the exp
function on the balls of radius R1 on the whole manifold M , by replacing hj with
expxj ◦hj ◦ exp−1

xj−1
: BR(0) → BR(0), one can assume that the maps are defined

between open sets of Rd. Now, it is enough to show that there exists L1 > 1 such
that for any measurable set S ⊆ BR(0),

(14) L−1
1 | detD0h

n|Leb(S) ≤ Leb(hn(S)) ≤ L1| detD0h
n|Leb(S).

Since the sequence has bounded C1+α norm, the maps z 7→ log |detDzhj | are α-
Hölder on BR(0) with some uniform constant, that is, there exists L′ > 0 (indepen-
dent of j) such that for any j ≥ 1 and any pair z, z′ ∈ BR(0),

∣∣∣ log
∣∣detDzhj

∣∣− log
∣∣detDz′hj

∣∣
∣∣∣ < L′|z − z′|α.

For x ∈ BR(0) and j ≤ n, denote xj := hj(x). From the contraction property,

|xj | ≤
(

sup
z∈BR(0)

‖Dzh
j‖
)
|x| ≤ λj |x| ≤ λjR.

Therefore,

∣∣∣ log
|detDxh

n|
|detD0hn|

∣∣∣ =

n−1∑

j=0

∣∣∣ log | detDxjhj+1| − | detD0hj+1|
∣∣∣

< L′
n−1∑

j=0

|xj |α ≤ L′Rα
n−1∑

j=0

λjα.
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Now, since λ < 1, L1 := exp
(
L′Rα

∞∑
j=0

λjα
)
<∞ and so

(15) L−1
1 |detD0h

n| ≤ | detDxh
n| ≤ L1| detD0h

n|.

By the change of variable formula,
∫

S
| detDxh

n|dLeb(x) ≤ L1|detD0h
n|Leb(S).

The proof of the other inequality in (14) is similar. �

3.3. Infiltrated quasi-conformality. In this subsection, we show that under hy-
potheses (H0)-(H3), quasi-conformality of the derivatives at the origin leads to the
quasi-conformality in a neighbourhood. Informally, the idea is that the contracting
assumption forces the derivatives of long blocks in the nearby points to imitate the
behaviour of derivatives at the origin. The results of this subsection will not be used
in other parts of the paper and is included here for its own interest.

Theorem 3.5. Let x ∈M , {fi}∞i=1 be a sequence in Diff1+α(M) with bounded C1+α

norm and quasi-conformal expanding at x. Then, there exist R > 0 and θ > 1 such
that for any n ∈ N and any ball B(y, r) ⊆ B(fn(x), R),

B(f−ny, rn) ⊆ f−n(B(y, r)) ⊆ B(f−n(y), θrn),

where f−n := (fn ◦ · · · ◦ f1)−1 and rn = rθ−
1
2 |detDxf

−n|1/d.

To prove Theorem 3.5, we first prove the following proposition.

Proposition 3.6. Let R,C > 0, κ ≥ 1 > λ > λ > 0 and α ∈ (0, 1). Then, there
exist ξ0 > 0, κ > 1 such that any sequence {hj}∞j=1 of maps satisfying hypotheses

(H0)-(H3) is κ-conformal at every point of Bξ0(0).

Proof. The proposition follows from a refinement of the proof of Lemma 3.3. For
α < 1, one should take blocks of compositions and repeat the claims of the proof
of Lemma 3.3. To avoid repeating the arguments, here we give a proof for C1+Lip

regularity, that is, for α = 1. For x ∈ BR(0), denote xi := hi(x), Di := D0hi,

δi := |detDi|1/d, D̃i := Dxi−1hi and Ei := Di − D̃i. Observe that for n ∈ N,

D0h
n −Dxh

n = Dn · · ·D1 − D̃n · · · D̃1 =
n∑

i=1

Dn · · ·Di+1EiD̃i−1 · · · D̃1.

Hence,

(16) ‖Dxh
n −D0h

n‖ ≤
n∑

i=1

‖Dn · · ·Di+1‖ · ‖Ei‖ · ‖D̃i−1 · · · D̃1‖.

Since Dn · · ·Di+1 is κ2-conformal, in view of (C2)′, one gets that ‖Dn · · ·Di+1‖ ≤
κ2δn · · · δi+1. On the other hand, (H1) implies ‖D̃i−1 · · · D̃1‖ ≤ λ i−1

. Now, for θ > 1
given by Lemma 3.2, |xi−1| ≤ θδi−1 · · · δ1|x| and so, by (H3),

‖Ei‖ = |Dxi−1hi −D0hi| ≤ Cθ|xi−1| ≤ CθRδi−1 · · · δ1.
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Using (16),

‖Dxh
n −D0h

n‖ ≤
n∑

i=1

CRκ2δn · · · δi+1δi−1 · · · δ1λ
i−1

≤ CRκ2λ−1
( n∑

i=1

λ
i−1
)
δn · · · δ1.

Now, by the convergence of the series
∑∞

i=0 λ
i−1

, there exists C1 > 0 such that for
any n ≥ 1 and x ∈ BR(0),

(17) ‖Dxh
n‖ ≤ ‖D0h

n‖+ ‖Dxh
n −D0h

n‖ < C1|detD0h
n|1/d.

By (15), one obtains that ‖Dxh
n‖ ≤ C1L

1/d
1 | detDxh

n|1/d. Thus, there exists κ =

κ(d,C1L
1/d
1 ) > 0 such that Dxh

n is κ-conformal, as claimed. �

Proof of Theorem 3.5. The proof is similar to the one of Theorem 3.1. Take xi, η, η, R

as in the proof of that theorem. Define {yi}ni=0 by yn := y and yi−1 := f−1
i (yi). By

uniform expansion, one obtains that for any j < n,

f−1
j+1 ◦ · · · ◦ f−1

n (B(yn, r)) ⊆ B(yj , r) ∩B(xj , R).

Now, define f̂i := (exp−1
yi ◦fi ◦ expyi−1

)|Br(0) and ĥi := f̂−1
n+1−i|Br(0). So, the conclu-

sion follows from Lemma 3.2 for this sequence. Indeed, condition (H3) is guaranteed
by Proposition 3.6. �

Remark 3.7. By Proposition 3.6, Lemma 3.4 and the results in the theory of quasi-
conformal and quasi-symmetric maps, one can give another proof for Theorem 3.5.
In fact, if a map is κ-conformal on its domain, then there exists a bound for the
ratio between outer and inner radii of the image of a ball (see [HK98, Section 4] and
[Väi89]). Then, the inner and outer radii can be estimated by means of estimating
the volume and the bounded distortion lemma (Lemma 3.4).

4. Quasi-conformal dynamics

This section is devoted to the notion of covering property for derivatives. We dis-
cuss its consequences in providing quasi-conformal orbit-branches and also sufficient
conditions to ensure it.

Throughout the section, M is a boundaryless Riemannian manifold of dimen-
sion d. We consider the fiber bundle π : E(M) → M . Recall that for w =

(x, (v1, . . . , vd)) ∈ E(M), ‖w‖2 is defined by ‖w‖2 = (
∑

i |vi|2)
1
2 , where |.| is the

norm induced by the Riemannian metric on TM .
Furthermore, for a linear map T : W0 → W1 between finite dimensional vector

spaces endowed with inner products, we denote the Hilbert-Schmidt norm of T by
‖T‖2, defined by

‖T‖2 :=
(∑

i

|Tei|2
) 1

2 ,

where {ei}i is an orthonormal basis for W0. In particular, for f ∈ Diff1
loc(M),

and w = (x, (e1, . . . , ed)) ∈ E(M), where x ∈ Dom(f) and {e1, . . . , ed} form an

orthonormal basis for TxM , it follows that ‖D̂xf‖2 = ‖D̂f(w)‖2.
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For linear isomorphisms T : W0 → W1 and S : W1 → W2 between d-dimensional
vector spaces, we will use the following properties.

‖T‖ ≤ ‖T‖2 ≤
√
d‖T‖.(18)

‖S ◦ T‖2 ≤ ‖S‖.‖T‖2 and ‖S ◦ T‖2 ≤ ‖S‖2.‖T‖.(19)

If | detT | = 1, then ‖T−1‖ ≤ ‖T‖d−1. Therefore, T is ‖T‖d-conformal.(20)

4.1. Stable quasi-conformality. In this subsection, we present a criterion for the
existence of quasi-conformal orbit-branches in pseudo-semigroup actions.

A subset W ⊆ E(M) is called bounded, if supw∈W ‖w‖2 <∞.

Theorem 4.1 (Quasi-conformality criterion). Let V ⊆M be an open set and F ⊆
Diff1

loc(M). Then, the following are equivalent

(a) There exists κ > 1 such that for every x ∈ V , the pseudo-semigroup gener-
ated by F↓V has a κ-conformal orbit-branch at x.

(b) There exists a bounded subset W ⊆ E(M) such that π(W) = V , and

(21) W ⊆
⋃

f∈F
(D̂f)−1(W).

Proof. For the implication (a)⇒(b). For every x ∈ V , let {fi,x}∞i=1 be a sequence
defining a κ-conformal orbit-branch of F↓V at x. Consider an arbitrary orthonormal
basis {ei}i for TxM and let wx = (x, e) ∈ π−1(x) be such that e = (e1, . . . , ed). Note

that for any x ∈ V , ‖wx‖2 =
√
d. Then, the set W defined by

W :=
⋃

x∈V

⋃

i≥0

D̂f ix(wx),

satisfies the desired properties, where f ix = fi,x ◦fi−1,x ◦· · ·◦f1,x. Indeed, π(W) = V

and for any x ∈ V and i ∈ N, D̂xf
i
x is κ-conformal and so by (19),

‖D̂f ix(wx)‖2 ≤ ‖D̂xf
i
x‖.‖wx‖2 ≤ κ

√
d.

Therefore, supw∈W ‖w‖2 ≤ κ
√
d and soW is bounded. On the other hand, covering

property (21) follows immediately from the definition of W, since every element of
W is of the following form

D̂f ix(wx) = (D̂fi+1,x)−1(D̂f i+1
x (wx)) ∈ (D̂fi+1,x)−1(W).

Next, in order to show (b)⇒(a), first denote H := supw∈W ‖w‖2. Fix w =
(x, (v1, . . . , vd)) ∈ W. We first claim that there exists a sequence {fi}∞i=1 in F such

that for any n ≥ 1, D̂fn(w) ∈ W. The proof is by induction, assume that f1, . . . , fn
are defined satisfying the properties. Then,

D̂fn(w) ∈ W ⊆
⋃

f∈F
(D̂f)−1(W).

So, there is fn+1 ∈ F with D̂fn(w) ∈ (D̂fn+1)−1(W). Consequently, by the chain

rule, D̂fn+1(w) ∈ W. This finishes the proof of the claim.
Consider an orthonormal basis {e1, . . . , ed} for TxM and let T : TxM → TxM

be the linear map with T (ei) = vi. Clearly, |detT | = 1, ‖T‖2 = ‖w‖2 ≤ H, and

for any n ≥ 0, ‖D̂xf
n ◦ T‖2 = ‖D̂fn(w)‖2 ≤ H. The last inequality holds since

D̂fn(w) ∈ W. Using (18) and (20), one obtains

‖D̂xf
n‖ ≤ ‖D̂xf

n ◦ T‖.‖T−1‖ ≤ ‖D̂xf
n ◦ T‖.‖T‖d−1 ≤ Hd.
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x

V

Figure 2. Covering condition (22): diversity of maps corresponding
to x ∈ V , i.e. maps in the subfamily Fx.

Again, by (20), this implies that the sequence {fi}∞i=1 is κ-conformal at x for κ =

Hd2 . �

Corollary 4.2 (Stable quasi-conformality). Let V ⊆ M be an open set and F ⊆
Diff1

loc(M). Assume that W is an open subset of E(M) with compact closure satis-
fying π(W) = V and

(22) W ⊆
⋃

f∈F
(D̂f)−1(W).

Then, there exists κ > 1 such that for any family F̃ in a C1 neighbourhood of F ,
IFS(F̃↓V ) has a κ-conformal orbit-branch at every point of V .

Proof. By the compactness ofW and the openness ofW, the same covering property
(22) holds for any family F̃ in a small C1 neighbourhood of F . Hence, the conclusion
follows from Theorem 4.1. Moreover, the proof of Theorem 4.1 shows that κ =

(supw∈W ‖w‖2)d
2

only depends on W. �

Remark 4.3. For oriented manifolds and orientation-preserving maps, one can work
with the following alternative fiber bundle instead of E(M),

{(x,v) : x ∈M, v ∈ (TxM)d, and ω|x(v) = 1},
where ω is the volume form on M induced from the Riemannian metric compatible
with the orientation, and ω|x is its restriction to TxM . This defines a SL(d,R) fiber
bundle over M which is a quotient of E(M) by an involution.

Reinterpretation of the covering property. Let us discuss the meaning of covering
condition (22). Indeed, it is equivalent to the following (see Figure 2):

• For any x ∈ V , there exists Fx ⊆ F such that
(i) f(x) ∈ V , for f ∈ Fx,

(ii) Wx ⊆
⋃
f∈Fx(D̂f)−1(Wf(x)), where Wx := π−1(x) ∩W.

Roughly speaking, this means that over every point x there are several maps in the
family F with diverse directions of contraction and expansion for the normalized
derivative that allows to obtain covering (ii) which yields the quasi-conformality
along an orbit-branch of x.
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In the case of M = Rd, E(Rd) is isomorphic to the trivial fiber bundle Rd ×
SL±(d,R) and the action of D̂f on fibers in nothing but the product of matrices in

SL±(d,R). More precisely, for f ∈ Diff1
loc(Rd), D̂f maps (x,A) ∈ Rd× SL±(d,R) to

(f(x), AxA) where Ax := D̂xf ∈ SL±(d,R). In other words, the covering condition
(22) will be reduced to finding a map f ∈ F such that AxA is in the bounded

set Wf(x). Observe that Rd × SL(d,R) is invariant under D̂xf for an orientation-

preserving f ∈ Diff1
loc(Rd). In particular, it is enough to satisfy the covering condi-

tion for W ⊆ Rd × SL(d,R). The next subsection gives a method of doing that.

4.2. Sufficient conditions for covering: algebraic method. Following the dis-
cussion above, we investigate the covering property for the action of SL(d,R) on
itself.

Recall that the sequence {Di}∞i=1 in SL(d,R) is quasi-conformal if and only if the
set {Dn · · ·D1 : n ∈ N} is bounded. Also, the sequence {Di}∞i=1 is κ-conformal, if
for any n ∈ N, Dn · · ·D1 is κ-conformal.

A2 A3 A4A1

Figure 3. A quasi-conformal sequence of matrices

Definition 4.4. For κ ≥ 1 and D ⊆ SL(d,R), we say 〈D〉+ has a κ-conformal
branch, if there exists a κ-conformal sequence in D. In addition, when D is finite,
we say it robustly has κ-conformal branches, if for every D̃ in a neighbourhood of
D, 〈D̃〉+ has κ-conformal branches.

For a finite subset D ⊆ SL(d,R), if 〈D〉+ is not compact, typical branches are
not quasi-conformal in a probabilistic sense. More precisely, by assigning positive
probabilities to the elements of D, almost every branch with respect to the product
measure on DN is not κ-conformal for any κ > 1.

This is worth to mention that for fixed n ∈ N, for almost every n-tuple D ∈
SL(d,R)n (w.r.t the natural measure), the Lyapunov spectrum associated to the
random product of elements of D is non-degenerate provided that we assign positive
weights to the elements of D. In such case, for almost every branch with respect
to the product measure on DN, the norm of the products diverges exponentially to
infinity (cf. [Via14]).

Nevertheless, the following lemma which is an analogue of Theorem 4.1 for the ac-
tion of SL(d,R) on itself expresses that the covering condition leads to the existence
of bounded branches for a finitely generated semigroup. Moreover, Corollary 4.6 for
this special case evidently implies that given κ > 1, any open neighbourhood U of
the identity in SL(d,R) with compact closure has a finite subset D with robustly
κ-conformal branches.

Lemma 4.5. Let D ⊆ SL(d,R) be a finite set. Then, there exists κ > 1 such that
〈D〉+ has a κ-conformal branch if and only if U ⊆ D−1U for some U ⊆ SL(d,R)



STABLE LOCAL ERGODICITY 19

with compact closure. Moreover, if U is open, 〈D〉+ robustly has a κ-conformal
branch for some κ > 1.

Proof. Let V = Rd and W = Rd × U . Considering the natural action of SL(d,R)
on Rd, D can be seen as a family in Diff(Rd). Then, the first part of the lemma
follows from Theorem 4.1. The second part is similar. Note that U ⊆ D−1U implies
that for any family D̃ sufficiently close to D, U ⊆ D̃−1U holds and so the second
conclusion is again a consequence of Theorem 4.1. �

We can deduce the following corollary from Lemma 4.5.

Corollary 4.6. For any κ > 1 and any open set U ⊆ SL(d,R) containing the
identity, there is a finite set D ⊆ U such that 〈D〉+ robustly has a κ-conformal
branch.

Proof. Consider small open neighbourhood V of the identity with compact closure
such that every element of V is κ-conformal. Clearly, V ⊆ U−1V =

⋃
u∈U u

−1V. By

the compactness of V, one can choose a finite set D ⊆ U with V ⊆ D−1V. Thus, the
conclusion follows from Lemma 4.5. �

Remark 4.7. Lemma 4.5 and Corollary 4.6 can be stated for the existence of bounded
branches in an abstract setting for more general topological groups. However, due
to the applications for the derivatives of smooth maps, in this paper the discussion
is restricted to the special cases of SL(d,R) and Rd.

Explicit construction for covering. Corollary 4.6 is existential and does not introduce
elements of D explicitly and even does not give any estimate for the cardinality of
this set. The next lemma guaranties the covering of small open sets with d2 elements.

Lemma 4.8. For any neighbourhood U0 of the identity in SL(d,R), there exists an
open set U ⊆ U0 and a finite set D ⊆ U0 with d2 elements such that U ⊆ D−1U .

Denote by sl(d,R) the Lie algebra of SL(d,R) which consists of all d× d real ma-
trices whose traces are equal to zero. Furthermore, here exp denotes the exponential
function from a neighbourhood of the zero matrix in sl(d,R) to a neighbourhood
of the identity in SL(d,R) which verifies the Baker-Campbell-Hausdorff formula. It
will be used in the proof of the next lemma.

Lemma 4.9. For any neighbourhood U0 of the zero matrix in sl(d,R), there exist

an open subset U and a finite subset D = {w1, . . . , wd2} of U0 such that exp(U) ⊆
exp(D)−1exp(U).

For the proof, we use the following notation. For a connected open set U ⊆ RN
and small t > 0, denote

(23) Ut := {x ∈ U : d(x, ∂U) > t}.
In addition, the following observation will be used in the proof of Lemma 4.9.

Lemma 4.10. Let U ⊆ RN be an open set with U homeomorphic to the closed unit
disk. Suppose that ϕ0, ϕ1 are two continuous maps defined on a neighbourhood of U
and are homeomorphisms onto their images. If there exists t > 0 such that for any
x ∈ U , |ϕ0(x)− ϕ1(x)| < t, then

(
ϕ0(U)

)
t
⊆ ϕ1(U).
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The proof of this lemma is based on considering an affine homotopy between ϕ0

∣∣
∂U

and ϕ1

∣∣
∂U

, then showing that the image of homotopy does not intersect
(
φ0(U)

)
t
.

Further details are left to the reader.

Proof of Lemma 4.9. Suppose v1, . . . , vN are N points in RN−1 with |vi| = 1 such
that the origin is contained in their convex hull. Denote the interior of their convex
hull by ∆. Clearly, for any small positive t ∈ R, ∆ ⊆ ⋃N

i=1(∆ + tvi). Since ∆
is compact and ∆ + tvj ’s are all open, one can find sufficiently small c > 0 such

that ∆ ⊆ ⋃N
i=1(∆ + tvi)c (following the notation introduced in (23)). As the whole

construction is invariant under homothety, for any r > 0,

(24) r∆ = r∆ ⊆
N⋃

i=1

(r∆ + trvi)cr.

By identification of sl(d,R) with RN−1 for N = d2, vi’s can be seen as d × d
matrices with zero trace. For any 1 ≤ j ≤ N , and any sufficiently small r > 0, we

define u
(r)
j : r∆→ sl(d,R) as the following

u
(r)
j (x) = exp−1

(
exp(trvj)exp(x)

)
.

By the Baker-Campbell-Hausdorff formula for the Lie groups (see for instance [Ros06]),

exp−1
(
exp(trvj)exp(x)

)
= x+ trvj + εj(x, tr),

where εj satisfies |εj(x, s)| < Ej |x|s for some Ej > 0. Thus, whenever r <
min

1≤j≤N
{ c
Ejt
}, for 1 ≤ j ≤ N one has,

sup
x∈r∆

∣∣u(r)
j (x)− (x+ trvj)

∣∣ = sup
x∈r∆

|εj(x, rt)| ≤ Ejrt sup
x∈r∆

|x| ≤ Ejr2t < cr.

By Lemma 4.10, for every 1 ≤ j ≤ N , r∆ + trvj ⊆ u(r)
j (r∆) and so by (24),

r∆ ⊆
N⋃

j=1

u
(r)
j (r∆).

Finally, as the exponential map is a diffeomorphism on u
(r)
j (r∆) and on r∆,

(25) exp(r∆) = exp(r∆) ⊆ exp
( N⋃

j=1

u
(r)
j (r∆)

)
=

N⋃

j=1

(
exp
(
u

(r)
j (r∆)

))
.

Meanwhile, by the definition of u
(r)
j , we have exp(u

(r)
j (r∆)) = exp(trvj)exp(r∆).

Thus, the conclusion of Lemma 4.9 follows from (25) by taking wj := −trvj and
U := r∆ for sufficiently small r. �

Remark 4.11. One can start with any simplex ∆ in sl(d,R) ' Rd2−1 containing the
origin in the interior to provide an explicit formula for D in Lemma 4.9.

Proof of Lemma 4.8. Consider an open neighbourhood U0 of the zero matrix in
sl(d,R) such that the exp function is a diffeomorphism in a neighbourhood of U0

and exp(U0) ⊆ U0. Now, applying Lemma 4.9 to U0, one can get U,D. Then,
U := exp(U) and D := exp(D) satisfy the conditions of Lemma 4.8 and the proof is
finished. �
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4.3. Sufficient conditions for covering: analytic method. This subsection
states another approach to derive a sufficient condition leading to the covering prop-
erty with respect to a bounded subset of E(M).

Lemma 4.12. Let F ⊆ Diff1
loc(M) and V ⊆M be an open set with compact closure.

Assume that for any (x, v) ∈ T 1M with x ∈ V , there exists f ∈ F satisfying

f(x) ∈ V and ‖D̂xf |v⊥‖ < 1. Then, there exists an open set W ⊆ E(M) with

compact closure such that π(W) = V and W ⊆ ⋃f∈F (D̂f)−1(W).

Proof. Since the set {(x, v) ∈ T 1M : x ∈ V } is compact, one can find a finite subset
F0 ⊆ F and ε > 0 such that for any (x, v) ∈ T 1M with x ∈ V , there exists f ∈ F0

satisfying f(x) ∈ V and ‖D̂xf |v⊥‖ < 1− ε.
Denote Θ := max{‖D̂xf‖ : f ∈ F0, x ∈ V }. Let H ≥ Θ4/ε be a real number.

Then, consider W ⊆ E(M), defined by

(26) W := {w ∈ E(M) : π(w) ∈ V and ‖w‖2 < H}.
Clearly, W is an open subset with compact closure and π(W) = V . It is enough
to prove that (22) holds for the subfamily F0 and W defined by (26). Consider
w = (x, (v1, . . . , vd)) ∈ W. So, ‖w‖2 ≤ H. If ‖w‖2 < Θ−1H and f ∈ F0 with
f(x) ∈ V , then by (19),

‖D̂f(w)‖2 =
( d∑

i=1

|D̂xf(vi)|2
) 1

2 ≤ ‖D̂xf‖.‖w‖2 < H.

Thus, D̂f(w) ∈ W and consequently, w ∈ ⋃f∈F0
(D̂f)−1(W). Now, assume that

‖w‖2 ∈ [Θ−1H,H]. Without loss of generality, assume that |v1| ≥ · · · ≥ |vd|.
Clearly, |vd| ≤

√
H/d. So,

|vd|Θ
√
d/ε ≤ Θ

√
H/ε ≤ Θ−1H ≤ ‖w‖2 =

√
|v1|2 + · · ·+ |vd|2 ≤

√
d|v1|.

This implies that Θ2|vd|2 ≤ ε|v1|2. Let v be a vector perpendicular to v1, . . . , vd−1.

By assumption, one can choose f ∈ F0 with f(x) ∈ V and ‖D̂xf |v⊥‖ < 1− ε. Then,

‖D̂f(w)‖22 =
d∑

i=1

|D̂xf(vi)|2

< (1− ε)2(|v1|2 + · · ·+ |vd−1|2) + Θ2|vd|2

≤ (1− ε)2(|v1|2 + · · ·+ |vd−1|2) + ε|v1|2 < ‖w‖22 ≤ H2.

Therefore, w ∈ ⋃f∈F0
(D̂f)−1(W). �

5. Quasi-conformal blenders

This section is devoted to a new mechanism/phenomenon that we call quasi-
conformal blender. For pseudo-semigroup actions, the quasi-conformal blender guar-
antees the existence of quasi-conformal expanding orbit-branches at every point in
some region which leads to the stable local ergodicity. Here, we present the proof
of Theorem F and its variants using the results of the previous sections.

Throughout the section, M is a boundaryless, not necessarily compact, smooth
Riemannian manifold of dimension d. Recall that x ∈ M is a (Lebesgue) density
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point of a measurable set S ⊆M if

lim
r→0

Leb
(
S ∩B(x, r)

)

Leb
(
B(x, r)

) = 1.

It is well-known that a measurable set S ⊆ M is equal to the set of its Lebesgue
density points, up to a zero measure set. Moreover, for f ∈ Diff1

loc(M), f(x) is a
density point of f(S), provided that x ∈ Dom(f) is a density point of S.

Definition 5.1 (ρ-ergodic). Let V ⊆M be an open set with compact closure. For
ρ > 0 and F ⊆ Diff1

loc(M), we say IFS(F↓V ) is ρ-ergodic (w.r.t. Leb.), if the set
of density points of every measurable F↓V -invariant subset of V either is empty or
contains a ball of radius ρ.

Clearly, this definition is equivalent to say that every measurable F↓V -invariant
set of positive measure in V contains a ball of radius ρ, up to a set of zero Lebesgue
measure.

5.1. From quasi-conformal expansion to local ergodicity. In this subsection,
we state a technical lemma about the quasi-conformal expanding sequences. It will
be used in both local and global settings for proving local ergodicity.

Lemma 5.2 (Local ergodicity). Let η, κ > 1 and ρ, α, C > 0. Also, let {xj}∞j=0 be

a sequence in M and {fj}∞j=1 with fj : B(xj−1, ρ) → fj(B(xj−1, ρ)) be a sequence

in Diff1+α
loc (M) satisfying m(Dfj) > η and fj(xj−1) = xj. Then,

(a) for any open neighbourhood U ⊆ B(x0, ρ) of x0, there exists n ∈ N with
B(xn, ρ) ⊆ fn(U).

(b) If in addition, the set {x0, x1, . . .} is bounded, the sequence {fj}∞j=1 is κ-

conformal at x0, and ‖Dfj‖C1+α < C, then for any measurable set S ⊆
B(x0, ρ) with density point at x0, there exists n ∈ N such that

⋃
i∈N f

i(S)
contains B(xn, ρ), up to a set of zero Lebesgue measure.

Proof. We prove assertions (a) and (b) separately.

Proof of (a). For every i ≥ 1, let si be the largest positive number in (0, ρ] satisfying
B(xi, si) ⊆ f i(U). Since m(Dfi|B(xi−1,ρ)) > η, if for some i ≥ 1, si < ρη−1, then

si+1 > ηsi, and if si ≥ ρη−1, then si+1 = ρ. Hence, there is n ≥ 0 with sn = ρ. This
finishes the proof of part (a). Note that for this part of the lemma, we only need
the sequence {fi} to be C1-regular.

Proof of (b). By applying Theorem 3.1 to this sequence, one can find ξ0 > 0 and
θ > 1 such that for each j ∈ N, there is rj > 0 with

(27) f j(B(x0, rj)) ⊆ B(xj , ξ0) ⊆ f j(B(x0, θrj)),

and lim
j→∞

rj = 0. For the rest of the proof, fix ξ0 and assume that ξ0 < ρ. Denote

Ŝ :=
⋃
i≥0 f

i(S). Since x0 is a density point of S, for any ε > 0, there exists j0 ∈ N
such that whenever j > j0,

Leb
(
B(x0, θrj) \ Ŝ

)

Leb
(
B(x0, θrj)

) < ε.
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There exists σ > 0 such that for any r, r′ ∈ (0, ρ),

Leb(B(x0, r))

Leb(B(x0, r′))
≤ σ(

r

r′
)d.

Denote f−j := f−1
1 ◦ · · · ◦ f−1

j . Then, by (27),

Leb
(
f−j

(
B(xj , ξ0) \ Ŝ)

)

Leb
(
f−j(B(xj , ξ0))

) ≤ Leb
(
B(x0, θrj) \ Ŝ

)

Leb
(
B(x0, θrj)

) · Leb
(
B(x0, θrj)

)

Leb
(
f−j(B(xj , ξ0))

)

≤ Leb
(
B(x0, θrj) \ Ŝ

)

Leb
(
B(x0, θrj)

) · Leb
(
B(x0, θrj)

)

Leb(B(x0, rj)
)

< εσθd.

It follows from Lemma 3.4 that for some L > 1,

Leb
(
B(xj , ξ0) \ Ŝ

)

Leb
(
B(xj , ξ0)

) < L
Leb

(
f−j(B(xj , ξ0) \ Ŝ)

)

Leb
(
f−j(B(xj , ξ0))

) <εσLθd.

Thus, for any j > j0,

(28)
Leb

(
Ŝ ∩B(xj , ξ0)

)

Leb
(
B(xj , ξ0)

) > 1− εσLθd.

Now, since ε was arbitrary, by (28), the density of Ŝ in B(xj , ξ0) tends to 1 (as

j →∞). Then, for each accumulation point y0 of the bounded sequence {xi}∞i=1, Ŝ
contains B(y0, ξ0) up to a set of zero Lebesgue measure. Next, take a sufficiently

large i such that xi ∈ B(y0, ξ0). This implies that Ŝ contains an open neighbourhood
U of xi, up to a set of zero Lebesgue measure. Then, by part (a), there exists n > i
such that B(xn, ρ) ⊆ fn−i(U). Finally, since diffeomorphisms maps sets of zero

Lebesgue measure to sets of zero Lebesgue measure, Ŝ contains B(xn, ρ), up to a
set of zero Lebesgue measure. �

Lemma 5.2 has the following global consequence which can be seen as a general-
ization of Theorem 1.1.

Theorem 5.3. Let M be a closed manifold and F ⊆ Diff1+α(M) be finite. Suppose
that there exist η, κ > 1 such that IFS(F) has a κ-conformal η-expanding orbit-
branch at every point. Then, IFS(F) is ρ-ergodic for some ρ > 0. In particular, the
action of a group G ⊆ Diff1(M) is ergodic, if it is minimal and F ⊆ G.

Proof. Since F is finite, there exist ρ > 0 and η′ ∈ (1, η) such that whenever
m(Dxf) > η, for some x ∈ M and f ∈ F , then m(Df |B(x,ρ)) > η′. Indeed, if
C := maxf∈F ‖f‖C1+α , then for any x, y ∈M ,

|m(Dxf)−m(Dyf)| ≤ Cd(x, y)α.

where d(., .) denotes the distance on M . So, m(Dxf) > η implies that m(Dyf) > η′,
provided that d(x, y)α < ρ := C−1(η − η′).

For f ∈ F , denote Uf := {x ∈ M : m(Dxf) > η′} and f̂ := f |Uf . Also, let

F̂ := {f̂ : f ∈ F}. Consider a measurable F-invariant subset S of positive measure
and pick x to be a density point of S. Then, the κ-conformal η-expanding orbit-
branch of IFS(F̂) at x, provides a sequence of maps satisfying the assumptions of
Lemma 5.2 and the conclusion follows from this lemma.
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V

x

1

Images of a neighbourhood of x One-dimensional localized maps

Figure 4. Families of expanding maps satisfying the covering con-
dition in Theorem F.

For the second part, denote the set of density points of S by S•. Since F ⊆ G, it
follows from the first part that S• contains an open ball B. We claim that S• = M .
Indeed, Leb(B \ S) = 0 implies that for every g ∈ G, Leb(g(B) \ g(S)) = 0. Then,
by the invariance of S, Leb(g(B) \ S) = 0 and in particular, g(B) ⊆ S•. On the
other hand, by the minimality assumption,

⋃
g∈G g(B) = M . This proves the claim

and finishes the proof of the theorem. �

5.2. Proof of Theorem F. We will prove the following theorem which in particular
implies Theorem F.

Theorem 5.4 (Quasi-conformal blender). Let F ⊆ Diff1+
loc(M). Let W ⊆ E(M) be

an open set with compact closure and V := π(W). Assume that for any w ∈ W,
there exists f ∈ F satisfying

(i) D̂f(w) ∈ W,
(ii) m(Dxf) > 1, where x = π(w).

Then, there exist real numbers ρ > 0 and κ > 1 such that for every F̃ ⊆ Diff1+
loc(M)

in a C1-neighbourhood of F ,

(a) for any x ∈ V , IFS(F̃↓V ) has an orbit-branch which is κ-conformal at x,

(b) IFS(F̃↓V ) is ρ-ergodic.

In addition, if M is compact, IFS(F) and IFS(F−1) are minimal, then IFS(F) is
C1-stably ergodic in Diff1+

loc(M) and IFS(F−1) is C1-robustly minimal.

Proof of Theorem F. It follows from (1) that for every w ∈ W, there exists f ∈ F
with D̂f(w) ∈ W. Now, since every element of F is expanding, one has m(Dxf) > 1
for x = π(w). So, Theorem F follows from part (b) of Theorem 5.4. �

Remark 5.5. If a family F and a setW satisfy the assumptions of Theorem 5.4, then
for w ∈ W, one can get a subfamily Fw ⊆ F consisting of all elements satisfying
(i)-(ii). Then, for any element f ∈ Fw, restrict its domain to a small neighborhood
of w such that the restricted map is expanding. Let F ′ be the family of all these
restricted diffeomorphisms. It is clear that F ′ and W satisfy the assumption of
Theorem F. In other words, one can deduce part (b) in Theorem 5.4 from Theorem
F, and vice-versa.
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Remark 5.6. As a matter of fact, the C1 stability in Theorem 5.4 and its consequences
in this paper are valid in a substantially stronger form that allows to perturb the
family at each step of iterations. We do not discuss the details in this paper. Cf.
[HN14], where this notion of strong stability has been introduced.

Proof of Theorem 5.4. Since the assumptions (i)-(ii) are stable under small pertur-
bation of f , in the C1 topology, and w ∈ E(M), one can deduce that

• For every w ∈ W there exist ε(w) > 0 and fw ∈ F such that if Bw denotes

the open ball of radius ε(w) with center w ∈ E(M), then for any f̃ sufficiently

close to fw, in the C1 topology, π(Bw) ⊆ Dom(f̃) and for any w′ ∈ Bw,

(1) D̂f̃(w′) ∈ W,

(2) m(Dx′ f̃) > 1, where π(w′) = x′.

Proof of (a). Let B′w be the open ball of radius of 1
2ε(w) with center w. Then,

by the compactness of W, there is a finite subset {w1, . . . ,wk} of W such that
W ⊆ ⋃i B′wi . By Corollary 4.2, this implies the existence of κ > 1 such that for

every F̃ sufficiently close to F , in the C1 topology, IFS(F̃↓V ) has a κ-conformal
orbit-branch at every point of V . So, the proof of part (a) is finished.

Proof of (b). Let ρ > 0 be smaller than the Lebesgue number of the open covering⋃
i B′wi for W. Then, there is η > 1 such that for any w ∈ W, there exists 1 ≤ i ≤ k

such that for any f̃ sufficiently close to fwi , in the C1 topology, B(x, ρ) ⊆ Dom(f̃),

f̃(B(x, ρ)) ⊆ V , and m(Df̃ |B(x,ρ)) > η, where x = π(w).

Denote F̃0 := {f̃w1 , . . . , f̃wk}. Let α > 0 be such that F̃0 ⊆ Diff1+α
loc (M). Consider

a measurable F̃0↓V -invariant set S of positive measure and let x0 be a density point
of S. Family F0 satisfies the assumptions (i)-(ii) of the theorem, so it follows from

part (a) that IFS(F̃0|V ) has a κ-conformal orbit-branch {xi}∞i=0 at x0. Let {f̃i}∞i=1

be the sequence of maps providing this orbit-branch, namely fi(xi−1) = xi for every
i ∈ N. Next, our aim is to apply Lemma 5.2 to this sequence. The problem is that
x0 may be close to the boundary of V and B(x0, ρ) 6⊆ f̃1↓V . To avoid this challenge,

we remove the first term of the sequences and consider {f̃i}∞i=2 and {xi}∞i=1, which
by means of above arguments satisfy the assumptions of Lemma 5.2. Note that
x1 = f̃1(x0) is also a density point of the invariant set S. By part (b) of Lemma
5.2, there is ξ0 > 0 and an accumulation point y0 of {xi}∞i=1 such that S contains
B(y0, ξ0), up to a set of measure zero. Since for any i ≥ 1, B(xi, ρ) ⊆ V and so

B(y0, ρ) ⊆ V . Similarly, an expanding orbit-branch {yi}∞i=0 of IFS(F̃↓V ) at y0 can
be provided in such a way that for any i ≥ 0, B(yi, ρ) ⊆ V . Using part (a) of Lemma
5.2 for open set U = B(y0, ξ0), one can conclude that the set of density points of S
contains B(yn, ρ) for some n ≥ 0. This finishes the proof of part (b).

Next, we go to the proof of global results. We assume that M is compact,
IFS(F) and IFS(F−1) are minimal on M . By the minimality, 〈F〉+(B(x, ρ′)) =
〈F−1〉+(B(x, ρ′)) = M where ρ′ < 1

2ρ. Suppose that
⋃
x∈X B(x, ρ′) = M for some

finite set X ∈M . On the other hand, by the compactness of M , there exists a finite
set F1 ⊆ 〈F〉+ with F1(B(x, ρ′)) = F−1

1 (B(x, ρ′)) = M , for any x ∈ X. Consider

small perturbation F̃ of F and denote the elements of F̃ corresponding to the family
F1 by F̃1. If the perturbation is sufficiently small, then for every ball B of radius ρ,

(29) F̃1(B) = F̃−1
1 (B) = M.
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Proof of stable ergodicity. Let S be a measurable F̃-invariant subset of M with
positive measure. Consider an arbitrary ball B0 ⊆ V of radius ρ. By (29), S ⊆
F̃−1

1 (B0) = M and so Leb(S ∩ B0) > 0. Then, by ρ-ergodicity of IFS(F̃↓V ), the
set of density points of S contains some ball B1 ⊆ M of radius ρ. Finally, by (29),

F̃1(B1) = M and this implies that S contains M , up to a set of measure zero.

Proof of robust minimality. The proof of robust minimality is similar to the one
of stable ergodicity. Consider an open set U ⊆ M , and ball B0 as above. Let
F̃ ⊆ Diff1

loc(M) be a family in a small C1-neighbourhood of F satisfying (29).

Again, (29) implies that Û := 〈F̃〉+(U) intersects B0 ⊆ V . Consider z0 ∈ Û ∩ B0.
Then, similar to the arguments of part (b), one can find an expanding orbit-branch

of IFS(F̃↓V ) at z0 and use part (a) of Lemma 5.2 to deduce that Û contains a ball

B2 ⊆ V of radius ρ. Finally, again by (29), M = F̃1(B2) ⊆ Û . Since open set U was

arbitrarily chosen, it follows that the orbit of every point under IFS(F̃−1) is dense

in M . This means IFS(F̃−1) is minimal. �

5.3. Contracting quasi-conformal blenders. In this subsection, we present a
variant of Theorem F in the setting of contracting maps. This is useful to get local
ergodicity and local minimality simultaneously.

Theorem 5.7 (Contracting quasi-conformal blender). Let G ⊆ Diff1+
loc(M) andW ⊆

E(M) be a bounded open set with V := π(W). Let U ⊆ M be an open set with
compact closure containing π(W). Also, assume that

(i) W ⊆ ⋃g∈G D̂g(W),

(ii) for every g ∈ G, U ⊆ Dom(g) and g(U) ⊆ U .
(iii) every g ∈ G is uniformly contracting on U .

Then, for every G̃ ⊆ Diff1+
loc(M) in a C1-neighbourhood of G, any measurable G̃↓U -

invariant set of positive measure in U , has full measure in V . Also, for every x ∈ U ,
〈G↓U 〉+(x) is dense in V .

Proof. By the compactness ofW and the openness ofW, one can replace G with a fi-
nite subfamily satisfying the assumptions. So, we may assume that G ⊆ Diff1+α

loc (M),
for some α > 0, is finite.

Let Λ := ∩nGn(U) be the Hutchinson attractor of IFS(G|U ). It follows from
[Hut81] that for any x ∈ U , 〈G〉+ (x) is dense in Λ (cf. [HN14, Theorem 4.2]). On
the other hand, for any n ∈ N,

V ⊆ G(V ) ⊆ Gn(V ) ⊆ Gn(U),

and thus V ⊆ Λ. This in particular implies that for every x ∈ U , 〈G↓U 〉+(x) is
dense in V and consequently, every G↓U -invariant subset of positive measure in U ,
intersects V in a set of positive measure.

Note that the family G−1↓U is uniformly expanding on V . On the other hand,
in view of assumption (i), G−1 satisfies the covering property (1) for W. Now, let
S be a measurable G↓U -invariant set with Leb(S) > 0. It follows from above that
Leb(S ∩ V ) > 0. Suppose that Leb(S ∩ V ) < Leb(V ). Then, S′ := V \ S is G−1↓V -
invariant and Leb(S′) > 0. By applying Theorem 5.4 to the family G−1↓V , one gets
that the set of density points of S′ contains an open ball B. Let x be a density point
of S. By above arguments, some element of 〈G↓U 〉+ maps x to B. This contradicts
to the invariance of S under G↓U and shows that S must have full measure in V .
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Finally, note that after small perturbation of the generators of G, all the assump-
tions of the theorem hold. That is, the conclusion follows for the family G̃ sufficiently
close to G, following similar arguments above. �

Remark 5.8. It follows from the proof of Theorem 5.7 that one can replace the
assumption (i) with V ⊆ ⋃g∈G g(V ) and deduce the density of 〈G〉+(x) in V for any
x ∈ V .

5.4. Other statements on quasi-conformal blenders. In this subsection, we
state an analogue of Theorem F. First note that if V ⊆ M is completely inside an
open chart of M , one can use the coordinating map to translate the problem to an
open subset of the Euclidean space. In this case, one can get the following statement
in view of Theorem 5.4.

Theorem 5.9. Let F ⊆ Diff1+
loc(Rd) be a family of orientation-preserving maps. Let

V ⊆ Rd be a bounded open set and U ⊆ SL(d,R) be a bounded open neighbourhood
of the identity. Assume that for any x ∈ V , there exists Fx ⊆ F such that

(i) f(x) ∈ V , for f ∈ Fx,

(ii) U ⊆ ⋃f∈Fx(D̂xf)−1U ,

(iii) m(Dxf) > 1, for f ∈ Fx.

Then, there exists ρ > 0 such that for every F̃ ⊆ Diff1+
loc(M) in a C1-neighbourhood

of F , IFS(F̃↓V ) is ρ-ergodic.

Note that V is not necessarily connected in Theorem 5.9. This yields a flexible
tool to get a result similar to Theorem F for every relatively compact open set in
manifolds using local charts.

Let M be a boundaryless manifold of dimension d with a finite atlas of charts
{(Wi, hi)}i∈I on M such that for any i ∈ I, hi : Wi → hi(Wi) is a C2 diffeomorphism
and hi(Wi) is an open disk in Rd. Assume that hi(Wi) ∩ hj(Wj) = ∅ if i 6= j. For

i ∈ I, let W ′i be an open set such that W ′i ⊆ Wi and M =
⋃
i∈IW

′
i . Now, for

an open set V ⊆ M with compact closure, denote V ∗ :=
⋃
i∈I hi(V ∩W ′i ). Note

that V ∗ ⊆ Rd is an open set with compact closure. Let F ⊆ Diff1+
loc(M) and denote

F∗ ⊆ Diff1+
loc(Rd),

F∗ := {hj ◦ f ◦ h−1
i : f ∈ F ∪ {Id}, i, j ∈ I such that x ∈Wi and f(x) ∈Wj}.

It is easy to see that the dynamical properties of F are translated to the ones of
F∗, and vice-versa. Then, we get the following.

Theorem 5.10. Let F ,F∗, V, V ∗ be as above. Let also U ⊆ SL(d,R). If F∗, V ∗,U
satisfies the assumptions of Theorem 5.9, then there exists ρ > 0 such that for every
F̃ ⊆ Diff1+

loc(M) in a C1-neighbourhood of F , IFS(F̃↓V ) is ρ-ergodic.
In addition, if M is compact, and the action of 〈F〉 is minimal, then it is C1-stably

ergodic and C1-robustly minimal.

Proof. The first part is an immediate consequence of Theorem 5.9, since the smooth
maps send the sets of zero Lebesgue measure to the sets of zero Lebesgue measure.
Moreover, Theorem 5.9 shows that for every family F̃ in a C1-neighbourhood of F ,
IFS(F̃↓V ) is ρ-ergodic.

The second part is a duplication of the last parts of Theorem 5.4, in which mini-
mality implies the stable covering of M by the images of arbitrary balls of radius ρ
in V , under finitely many elements of 〈F〉. �
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6. Stably ergodic actions on manifolds

In this section, we prove Theorems A, B and C using the local results of the
previous sections.

6.1. Ergodic IFS on arbitrary manifold. In this subsection, we use the results
of the previous section to construct a pair of diffeomorphisms generating a C1-
stably ergodic, C1-robustly minimal IFS on any closed manifold M of dimension d.
Theorem B is a consequence of the following.

Theorem 6.1. Every closed manifold M admits a semigroup generated by two
smooth diffeomorphisms that acts C1-stably ergodic and C1-robustly minimal in Diffs(M),
s ∈ (1,∞].

Remark 6.2. As far as the authors know, this is the first example of a stably ergodic
action on a manifold of dimension greater than one. In [BFMS17] and [Sar15] the
existence of such actions on surfaces is claimed, however, with an argument that only
works for conformal actions and mistakenly assumes “conformality of maps with
complex eigenvalues”. Indeed, it is easy to provide a non-quasiconformal sequence
of matrices all with complex eigenvalues.

We will use the following lemma. We omit its proof, since it is very similar to the
last part of the proof of Theorem 5.4.

Lemma 6.3. Let V be an open subset of compact manifold M and F be a family
in Diff1(M). Assume that 〈F〉+(V ) = 〈F−1〉+(V ) = M . If every measurable F-
invariant set has either zero or full Lebesgue measure in V , then IFS(F) is ergodic
on M . Similarly, if for every x ∈ M , 〈F〉+(x) is dense in V , then IFS(F) is
minimal.

Proof of Theorem 6.1. The case dim(M) = 1 is known. It comes from Theorem 1.1
and [GI00]. Indeed, Theorem 6.5 provides an explicit example for this case.

So, we may assume that dim(M) ≥ 2. The same statement for robust minimality
(without the ergodicity) is proved in [HN14, Theorem A]. Here, we carefully modify
its proof and make use of our results in the previous sections to prove both robust
minimality and stable ergodicity. First, we establish some local construction on
the Euclidean space and then realize them by C∞ diffeomorphisms on an arbitrary
smooth manifold. Recall that we work with the C1 topology on Diffs(M).

Step 1. Local construction: finitely many generators on Rd.
In this step, we construct a family of contracting affine transformations in Rd

sufficiently close to Id and satisfying the assumptions of Theorem 5.7.
Fix ε > 0 to be sufficiently small number and let κ < 1 + ε. Consider open

neighbourhood U0 of the identity in SL(d,R) such that any element D ∈ U0 is κ-
conformal. Consequently, 1− ε < m(D) and max{‖D‖, ‖D−1‖} < 1 + ε. By Lemma
4.8, one can find a set D ⊆ U0 containing d2 elements, and an open set U ⊆ U0 with

(30) U ⊆ D−1U .

Denote λ := 1 − ε and V := Bε2(0). For any D ∈ D and v ∈ Rd, define TD,v(x) :=
λD−1(x) + v. Clearly, for any D ∈ D, ‖DxTD,v‖ = λ‖D−1‖ < 1 − ε2 and V ′ :=
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Bε2(1−ε)2(0) ⊆ TD,0(V ). Take a finite subset J ⊆ V such that V ⊆ ⋃v∈J(V ′ + v).
Hence, for any D ∈ D,

(31) V ⊆
⋃

v∈J
TD,v(V ).

Note that the number of elements of J can be chosen independent of ε and depending
only on d, because (31) is invariant under scaling. Denote the cardinality of J by
Qd ∈ N.

Next, define G := {TD,v : D ∈ D, v ∈ J}. By (31), one gets that for any D ∈ D
and x ∈ V , there exists T ∈ G satisfying y = T−1(x) ∈ V and D̂yT = D−1. This

combined with (30) implies that for W := V × U ⊆ E(Rd), W ⊆ ⋃T∈G D̂T (W). On

the other hand, one can easily check that for every T ∈ G, T (B1(0)) ⊆ B1(0).
Therefore, the family G satisfies the assumptions of Theorem 5.7 for open sets
U := B1(0) ⊆ Rd and W. Accordingly, every G↓U invariant set of positive Lebesgue
measure in U has full measure in V . Moreover, this property is stable under small
perturbations of G, in the C1 topology. Let G̃ ⊆ Diff∞(Rd) be a family of diffeomor-

phisms obtained by extending all elements of G↓U to Rd such that every T ∈ G̃ is
equal to the identity outside B2(0). This is possible, since ε is small enough. Indeed,

we can assume that the diffeomorphisms in G̃ are close to the identity (of order ε).

Enumerate the elements of G̃ by T1, . . . , Tn, where n := d2Qd.

Step 2. Local construction: a pair of generators on M.
We first choose a C∞ Morse-Smale diffeomorphism f with a unique attracting

periodic orbit O(p) of period N > n and attraction rate sufficiently close to 1. We
can assume that fN is close to the identity. This can be done by deforming the time
one map of the gradient flow of a suitable Morse function with a unique minimum
point (cf. [HN14] for the details). Denote the set of all other periodic points of f
by Pf . Clearly, Pf is finite. Let U0 ⊆M be a small neighbourhoods of p such that

- for i = 0, . . . , N − 1, the sets f i(U0) are pairwise disjoint and fN (U0) ⊆ U0,
- the orbit of U0 under f does not intersect Pf .

- there exists a diffeomorphism φ : U0 → Rd with B2(0) ⊆ φ(fN (U0)).

For any 0 ≤ i ≤ N , denote Ui := f i(U0) ⊆ M . Then, define h ∈ Diff∞(M) as
follows (see Figure 5)

- For 1 ≤ i ≤ n, h|Ui := f i−N ◦ hi ◦ fN−i|Ui , where hi = φ−1 ◦ Ti ◦ φ.
- h equals to the identity outside

⋃n
i=1 Ui.

It is clear that h is close to the identity. We claim that every measurable set
S invariant under 〈{f, h}↓U0

〉+ with Leb(S ∩ U0) > 0 has full measure in V0 =

φ−1(V ) ⊆ M . In order to prove this, note that the family H := {hi : 1 ≤ i ≤ n} is

conjugate to Ĥ := {Ti : 1 ≤ i ≤ n} and by Step 1, every measurable H↓U0
-invariant

set of positive measure in U0, contains V0 up to a set of measure zero and the same
holds for every family close to H. On the other hand, for any 1 ≤ i ≤ n,

hi ◦ fN |U0 = (fN−i ◦ h ◦ f i−N ) ◦ fN |U0 ∈ 〈{f, h}↓U0
〉+.

Now, the family H̃ := {hi ◦ fN |U0 : 1 ≤ i ≤ n} is sufficiently close to H provided
that fN is sufficiently close to the identity. Therefore, the proof of the claim is
finished. Similarly, one can show that for any x ∈ U0, 〈f, h〉+(x) is dense in V0.
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Figure 5. Local constructions of f and h.

For any 0  i  N , denote Ui := f i(U0) ✓ M . Then, define h 2 Di↵1(M) as
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holds for every family close to H. On the other hand, for any 1  i  n,
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Finally, note that the arguments above show that if one perturbs f, h outsideSN
i=0 f i(U0), the local ergodicity and the local minimality remain true.
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Finally, note that the arguments above show that if one perturbs f, h outside⋃N
i=0 f

i(U0), the local ergodicity and the local minimality remain true.

Step 3. Global construction: a pair of generators on M .
Recall that f ∈ Diff∞(M) is a Morse-Smale diffeomorphism with a unique peri-

odic orbit O(p). The forward orbit of every point under f converges either to O(p)
or an element of Pf . Therefore,

M =
⋃

q∈Pf
W s
f (q) ∪W s

f (O(p)),

where W s denotes the stable manifold. Since O(p) is the unique attracting periodic
orbit for f , W s

f (O(p)) =
⋃
f−i(V0) is an open and dense subset of M . On the other

hand, for any q ∈ Pf , W s(q) is nowhere dense in M .
Pick ψ ∈ Diff∞(M) sufficiently close to the identity such that ψ(Pf )∪ψ−1(Pf ) ⊆

W s
f (O(p)) and ψ equals to the identity outside a small neighbourhood of Pf . Let

h̃ ∈ Diff∞(M) be close to h such that

- h̃ = h on
⋃

0≤i≤N f
i(U0),

- for a small neighbourhood of q ∈ Pf , h̃ = ψ ◦ f−1 ◦ ψ−1 ◦ f .

Now, define g := h̃ ◦ f−1 ∈ Diff∞(M) and let F := {f, g}. Clearly, h̃ = g ◦ f ∈
〈F〉+ and so 〈h̃, f〉+ ⊆ 〈F〉+. Moreover, if h̃ is sufficiently close to the identity, then
g is close to f−1. So, g is a Morse-Smale diffeomorphism, and since ψ is equal to the
identity near O(p), where O(p) is the unique repelling periodic orbit of g. Denote
the set of all other periodic points of g by Pg.

We claim that IFS(F) is C1-stably ergodic and C1-robustly minimal on M . Since

〈h̃, f〉+ ⊆ 〈F〉+ and h̃ equals to h near O(p), in view of Step 2 and Lemma 6.3,

it suffices to prove that 〈F〉+ (V0) =
〈
F−1

〉+
(V0) = M . Indeed, for every x ∈ M ,

gi(x) converges to some element of Pg ⊆ W s
f (O(p)) =

⋃
i∈N f

−i(V0). Consequently,〈
F−1

〉+
(V0) = M .
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Similarly, f−i(x) converges to some element of Pf ⊆ W s
g−1(O(p)), where O(p) is

the unique attracting periodic orbit for g−1. Thus, 〈F〉+ (V0) = M . Hence, the
proof of Theorem 6.1 is complete. �

6.2. Proof of Theorems A and C. We present a variant of Theorem A for dif-
feomorphisms between open sets of M , i.e. they are not necessarily globally defined
on the manifold.

In particular, it implies Theorems A and C.

Theorem 6.4. Let M be a closed smooth Riemannian manifold and F ⊆ Diff1+
loc(M).

Assume that for any (x, v) ∈ T 1M there exists f ∈ F such that m(Dxf) > 1 and

‖D̂xf |v⊥‖ < 1. Then, there exists ρ > 0 such that the action of 〈F〉 is stably
ρ-ergodic.

Moreover, if the action of 〈F〉 is minimal, it is C1-stably ergodic in Diff1+
loc(M)

and is C1-robustly minimal.

Proof. The proof follows from Lemma 4.12 and Theorem 5.4. By the compactness
of T 1M , one can find a finite subset F0 ⊆ F such that for any (x, v) ∈ T 1M there

exists f ∈ F0 with m(Dxf) > 1 and ‖D̂xf |v⊥‖ < 1. For any f ∈ F0, denote
Uf := {x ∈ M : m(Dxf) > 1}. Now, by Lemma 4.12, the assumptions of Theorem

5.4 are satisfied for family F̂0 := {f |Uf : f ∈ F0}. Therefore, there exists ρ > 0 such

that IFS(F̂0) is stably ρ-ergodic. In particular, IFS(F) is stably ρ-ergodic.
Then, similar to the proof of the last part of Theorem 5.4, we use minimality of

the action of 〈F〉 to stably cover M by the images of an arbitrary ball of radius ρ
under a finite set F1 ⊆ 〈F〉. This proves stable ergodicity and robust minimality of
the action of 〈F〉. �

The proof of Theorem A is the same as the proof above. Indeed, one should only
replace F by G.

Theorem C is obtained from its special case stated below.

Theorem 6.5. Let d ≥ 1 and {A1, . . . , Ak} ⊆ SO(d+1) generates a dense subgroup
of SO(d + 1). Then, for any A0 ∈ SL(d + 1,R) \ SO(d + 1), the natural action
of the group generated by {A0, . . . , Ak} on Sd is C1-stably ergodic in Diff1+α(Sd).
Moreover, it is C1-robustly minimal.

We denote by fA, the action of A ∈ SL(d + 1,R) on Sd, which is defined by
x 7→ Ax

|Ax| . Also, denote the standard orthonormal basis of Rd+1 by (e1, . . . , ed+1).

One can easily check that if the diagonal matrix Â = diag(r1, . . . , rd+1), satisfies

0 < rd+1 < min
1≤i≤d

ri, and max
1<i≤d

rdi < r1 · · · rd,

then

(32) m(Den+1fÂ) > 1, and ‖D̂ed+1
fÂ|W ‖ < 1,

where W is the (d− 1)-dimensional subspace in Ted+1
Sd perpendicular to e1. Note

that the inequalities in (32) are stable under perturbations of ed+1, W and f . More
precisely,

(∗) There exist λ < 1, ε > 0 and open neighbourhoods U of ed+1 such that for
any C1 map f sufficiently close to fÂ in the C1 topology, and any (p, v) ∈ T 1Sd

with p ∈ U and ∠(v, e1) < ε, one has ‖D̂pf |v⊥‖ < λ and ‖Dpf‖ > λ−1.
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We will need the following linear algebraic lemma.

Lemma 6.6. Given any matrix D ∈ SL(d + 1,R) \ SO(d + 1), there exist n > 0,
R0, R1, . . . , Rn ∈ SO(d+ 1), and α1, . . . , αn ∈ {−1,+1} such that

R0D
α1R1D

α2R2 . . . Rn−1D
αnRn = diag(r1, . . . , rd+1),

where 0 < rd+1 < min
1≤i≤d

ri and max
1<i≤d

rdi < r1 · · · rd.

Proof. For any permutation σ of {1, . . . , d + 1}, there are signs ε1, . . . , εd+1 ∈
{−1,+1} such that the linear map R defined by

R(x1, . . . , xd+1) = (ε1xσ(1), . . . , εd+1xσ(d+1)),

is an element of SO(d+ 1). Denote an element R associated to σ in this way by Rσ.
By means of the singular value decomposition, one can write D = RD′R′ with

R,R′ ∈ SO(d+ 1) and D′ diagonal. So, it suffices to prove the lemma for diagonal
matrices D. By replacing D with some RσDR

−1
σ , if necessary, suppose that D =

diag(s1, . . . , sd+1) with 0 < |sd+1| ≤ |sd| ≤ · · · ≤ |s1|. Since D 6∈ SO(d+ 1), |s1| > 1.
Let Σ be the set of all permutations σ of {1, . . . , d + 1} with σ(1) = 1. Then,
D1 :=

∏
σ∈ΣRσDR

−1
σ = diag(t1, . . . , td+1) satisfies

|t1| > |t2| = · · · = |td+1| = 1.

Let σ0 be the permutation on {1, . . . , d+ 1} with σ0(i) = d+ 1− i. Hence,

Rσ0D
−1
1 R−1

σ0 = diag(t−1
d+1, . . . , t

−1
1 ),

and so D2 = D1Rσ0D
−1
1 R−1

σ0 = diag(r1, . . . , rd+1) with |r1| > 1 > |rd+1| and |r2| =

· · · = |rd| = 1. Now, D2
2 has positive diagonal entries and satisfies the conditions. �

Proof of Theorem 6.5. Denote F := {fA1 , . . . , fAk} and F0 := F ∪{fA0}. Note that

ergodicity and minimality of the action of 〈F〉 is guaranteed, since 〈A1, . . . , Ak〉 =
SO(d + 1). So, we only need to show the stability under C1 perturbations. To this
end, we use minimality of the isometric action of 〈F〉 to transfer the properties of
the derivatives in some open set to the whole manifold.

Claim (Reduction to Theorem 6.4). There exists a finite set F1 ⊆ 〈F0〉 such that

for any (x, v) ∈ T 1Sd, m(Dxg) > 1 and ‖D̂xg|v⊥‖ < 1 for some g ∈ F1.

Proof. The fact 〈A1, . . . , Ak〉 = SO(d + 1) combined with Lemma 6.6 for D = A0

implies that there exists A ∈ 〈A0, A1, . . . , Ak〉 sufficiently close to Â, defined above,
such that (∗) holds for fA and its C1 perturbations. Fix this A for the rest of the
proof and denote f := fA, for simplicity.

It follows from the minimality of the action on T 1Sd that for any (x, v), there
exists h ∈ 〈F〉 such that for every (y, w) in a neighbourhood of (x, v), h(y) ∈ U
and ∠(Dyh(w), e1) < ε. Now, by (∗), g := f ◦ h ∈ 〈F0〉 satisfies m(Dyg) > λ−1 and

‖D̂yg|w⊥‖ < λ. Finally, by the compactness of T 1Sd, one can choose a finite subset
F1 of 〈F0〉 satisfying these properties. �

Since the action of F0 on Sd is minimal, this claim combined with Theorem 6.4
implies that the action of 〈F0〉 is C1-stably ergodic and C1-robustly minimal in
Diff1+(Sd). �
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Proof of Theorem C. Consider a finite family {A1, . . . , Ak} ⊆ SO(d+ 1) generating
a dense subgroup of SO(d + 1). The existence of such elements for d = 1 is trivial
and for d ≥ 2, is granted by [Kur51], as SO(d + 1) is a semi-simple Lie group.

Since 〈F〉 is dense in SO(d + 1), it contains elements Ã1, . . . , Ãk arbitrary close to
A1, . . . , Ak. On the other hand, F has an element A0 ∈ SL(d + 1,R) \ SO(d + 1).
So, Theorem 6.5 implies that the natural action of 〈F〉 on Sd is stably ergodic and
robustly minimal. �

We conclude the section with the proof of Corollary E.

Proof of Corollary E. In Theorems A,B or C, the action is ergodic (w.r.t Leb). Fix a
probability distribution on the semigroup and let ν be an ergodic stationary measure.
It is enough to show that if ν is not singular, then it is equivalent to Leb.

First, if ν is not singular to Leb, then Leb� ν. Indeed, ν assigns zero measure to
the backward orbit any measurable set S with ν(S) = 0 while ergodicity of the action
(w.r.t Leb) implies that if Leb(S) > 0, its backward orbit has full Lebesgue measure.
On the other hand, one can show that both singular and absolutely continuous part
of ν provided by Lebesgue’s decomposition theorem are stationary measures as well.
Now, since ν is ergodic and not singular, one can deduce µ � Leb. This finishes
the proof. (cf. [Raj22] for more details.) �

7. Some questions

7.1. The number of generators for stably ergodic actions. Theorem B states
that every manifold M admits a stably ergodic semigroup action generated by two
diffeomorphisms. A natural question to ask is whether or not the number of gener-
ators in Theorem B is optimal. In other words,

Question 7.1. Does there exist a manifold M with a stably ergodic (w.r.t. Leb.)
diffeomomorphism in Diff1+α(M)?

Two observations support a negative answer to this question. First, no Anosov
diffeomorphism is C1-stably ergodic (w.r.t. Leb.) in Diffs(M) (s ≥ 1). Second, some
manifolds do not admit a stably transitive diffeomorphisms. More precisely, there is
no C1-stably ergodic cyclic group in Diff1+α(M), if M is either the circle, a closed
surfaces, a 3-manifolds that does not admit partially hyperbolic diffeomorphisms (e.g.
S3), or a manifold whose tangent bundle does not split (e.g. S2k).

It follows from [GO73] that any C2 Anosov diffeomorphism which is ergodic with
respect to Lebesgue admits a unique invariant measure in the class of the Lebesgue
measure. On the other hand, by [LS72], the set of C2 Anosov diffeomorphisms
admitting no absolutely continuous invariant measure form an open and dense subset
in the C1 topology (satisfying an explicit condition on the derivative of some periodic
point). Since every Anosov diffeomorphism can be approximated by C2 Anosov
diffeomorphisms, it follows that no Anosov diffeomorphism is stably ergodic (w.r.t.
Leb.) in Diff1+α(M).

Next, it is a consequence of [Mañ82], [DPU99] and [BDP03] that some forms of
hyperbolicity (and thus splitting of the tangent bundle) can be obtained from robust
transitivity in Diff1(M). Moreover, on T2, a C1-robustly transitive diffeomorphism
is indeed an Anosov diffeomorphism. As a matter of fact, the same proofs works if
one considers the C1 topology in the space Diff1+α(M), as we do here. Thus, none of
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the manifolds listed above (except T2) do admit a stably transitive diffeomorphism.
The claims on S3 and S2k follow from [BBI04] and the obstruction theory in topology
[MS05], respectively.

These arguments raise the following questions (see also [AB06]).

Question 7.2. Which ergodic partially hyperbolic diffeomorphisms in Diff2(M) ad-
mit an invariant probability measure equivalent to the Lebesgue measure?

Question 7.3. Is it true that a generic diffemorphism in Diff2(M) admits no in-
variant measure in the class of the Lebesgue measure.

7.2. Ergodicity vs. quasi-conformality. In the theory of stable ergodicity in
Diff2

vol(M), usually the ergodicity follows from (some forms of) hyperbolicity using
a Hopf type arguments. Clearly, any form of hyperbolicity obstructs the existence
of quasi-conformal orbits. In contrast, as discussed above, even Anosov diffeomor-
phisms are not stably ergodic (w.r.t. Leb.) in Diff1+α(M). Moreover, the existence
of quasi-conformal orbits is a crucial ingredient of our arguments to establish stable
(local) ergodicity. One may ask the following.

Question 7.4. Does there exist a C1-stably ergodic finitely generated semigroup in
Diff2(M) such that (stably) the set of points having quasi-conformal orbit-branches
has zero Lebesgue measure?

In Theorem A, while the contraction hypothesis for the normalized derivative
on hyper-subspaces obstructs conformality, it allows one to obtain (stably) quasi-
conformal orbit-branches at every point. Inspired by the work of [ABY10] on semi-
groups of SL(2,R) we ask the next question concerning the optimality of this as-
sumption in dimension 2.

Question 7.5. Let M be a closed surface, F ⊆ Diff1(M) be finite. Suppose that the
action of 〈F〉+ has (stably) quasi-conformal orbit-branches at every point. Is it true

that for s ≥ 1, F can be Cs-approximated by the families F̃ satisfying the following
condition?

• For every (x, v) ∈ T 1M , there exists f ∈ 〈F̃〉+ with |D̂xf(v)| < 1.

7.3. Stationary measures. It is clear that the existence of an ergodic stationary
measure in the measure class of Leb for some distribution on a semigroup 〈F〉+
implies ergodicity of IFS(F) (w.r.t Leb). Conversely, ergodicity with respect to
the Lebesgue measure for IFS(F) implies that every ergodic stationary measure is
either equivalent or singular to Leb. These observations indicate a possible approach
for Question 7.4, particularly in dimension 2, where the work of [BR17] provides a
classification of all ergodic stationary measures. It is natural to ask the following
question.

Question 7.6. Given a generic pair of nearby Cs Anosov diffeomorphisms on T2

(s > 1), does there exist a distribution on the generated semigroup for which there
is some ergodic stationary measure in the class of the Lebesgue measure?
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cercle à des rotations. (On smooth conjugacy of diffeomorphisms of the

circle with rotations), Publ. Math., Inst. Hautes Étud. Sci. 49 (1979), 5–
233 (French).



36 A. FAKHARI, M. NASSIRI, AND H. RAJABZADEH

[HK98] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with
controlled geometry, Acta Math. 181 (1998), no. 1, 1–61.

[HN14] A. J. Homburg and M. Nassiri, Robust minimality of iterated function
systems with two generators, Ergodic Theory and Dynamical Systems 34
(2014), no. 6, 1914–1929.

[Hut81] J. E. Hutchinson, Fractals and self similarity, Indiana University Mathe-
matics Journal 30 (1981), no. 5, 713–747.

[KH95] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynam-
ical systems, vol. 54, Cambridge: Cambridge Univ. Press, 1995.

[Krz78] K. Krzyzewski, Some results on expanding mappings, Dynamical systems.
I, II, III. Warsaw. June 27 - July 2, 1977, 1978, pp. 205–218.

[Kur51] M. Kuranishi, On everywhere dense imbedding of free groups in Lie groups,
Nagoya Math. J. 2 (1951), 63–71.

[Liu16] X.-C. Liu, Lyapunov exponents approximation, symplectic cocycle defor-
mation and a large deviation theorem, Ph.D. Thesis, IMPA, 2016.

[LS72] A. N. Livshits and Y. G. Sinai, On invariant measures compatible with the
smooth structure for transitive U-systems, Sov. Math., Dokl. 13 (1972),
1656–1659.
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[Väi89] J. Väisälä, Quasiconformal maps of cylindrical domains, Acta Math. 162
(1989), no. 3-4, 201–225.

[Via14] M. Viana, Lectures on Lyapunov exponents, vol. 145, Cambridge University
Press, 2014.

[VO16] M. Viana and K. Oliveira, Foundations of ergodic theory, vol. 151, Cam-
bridge University Press, 2016.

[VV10] P. Varandas and M. Viana, Existence, uniqueness and stability of equilib-
rium states for non-uniformly expanding maps, Ann. Inst. Henri Poincaré,
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